The Effects of Substituents on the Degenerate Cope Rearrangement of Semibullvalenes and Barbaralanes^[1]

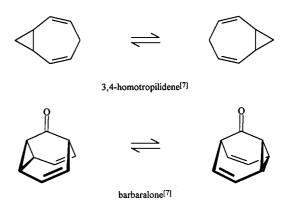
Lloyd M. Jackman*a, Errol Fernandesa, Markus Heubesb, and Helmut Quast*b

Department of Chemistry, The Pennsylvania State University^a, University Park, Pennsylvania 16802, U.S.A.

Institut für Organische Chemie der Universität Würzburg^b, Am Hubland, D-97074 Würzburg, Germany

Received March 25, 1998

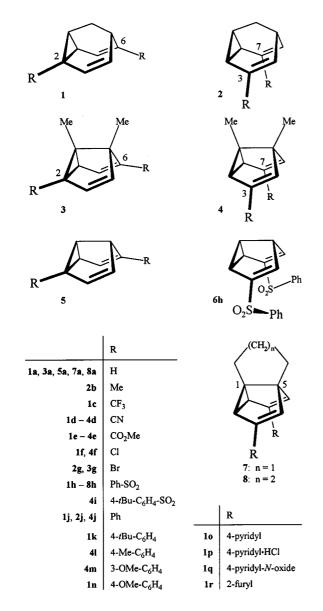
Keywords: Automerization / Carbocycles / Fluxionality / Hydrocarbons / NMR spectroscopy / Pericyclic reactions / Polycycles / Rearrangements / Strained molecules /Substituent effects / Valence isomerisation


The activation parameters [ΔG^+ (200 K), ΔH^+ , and ΔS^+] for the degenerate Cope rearrangements of barbaralane (1a) and several semibullvalenes (3a, 7a, 8a), and for those of a number of their 3,7- and 2,6-disubstituted derivatives, have been determined by variable-temperature carbon-13 NMR spectroscopy at 126 and 151 MHz. the disubstituted compounds studied include the barbaralanes 1c, d, e, h, j, k, and 2e, h, j, and the semibullvalenes 3d, e, h, 4e, h, i, l, m, and 5h-8h. Careful attention has been given to the measurement of temperatures. The data for these

compounds, together with those for related compounds previously reported in the literature, show that conjugating subsituents (e. g. aryl, CN, CO_2R) in the 2,6 positions lower the barriers of the degenerate Cope rearrangement, whereas substituents that are electron-withdrawing through the inductive effect (e. g. Cl, CF_3, SO_2Ar) retard the reaction. Substituents in the 3,7 positions have little effect or are rate-retarding. The presence of 1,5-tri- and -tetramethylene bridges in semibullvalenes accelerates the rearrangements, the effect being larger in the case of the former.

Introduction

There are a number of molecular systems that, in the absence of precise knowledge of energies, can be considered as having either ground states with double minimum potentials or ones with unique structures of higher symmetry. These include [2] the annulenes [3], certain intramolecularly hydrogen-bonded systems (e. g. the hydrogen maleate ion) [4], carbocations [5], and radical cations and anions [6], as well as many that involve conformational interchange rather than valence tautomerism. A particularly interesting class, conceived some 30 years ago by von E. Doering [7], consists of molecules that can undergo degenerate Cope rearrangements. His first examples of such Cope rearrangements were found with 3,4-homotropilidene and barbaralone. [7] In all above systems, the question arises as to whether it is possible to move from a structure having a double minimum to one of higher symmetry by introduction of suitable, symmetrically positioned substituents or heteroatoms. The degenerate Cope rearrangements in barbaralanes 1 and 2 and the related semibullvalenes 3 and 4 provide a convenient opportunity to study substituent effects in neutral molecules. A fascinating aspect of this problem is that if a compound with a symmetric ground state could be obtained it could be regarded as a perfectly delocalized derivative of bishomobenzene. [8]


The effects of substituents on the Cope rearrangement in barbaralanes and semibullvalenes have been the subject of several theoretical studies using semiempirical methods. Hoffmann and Stohrer^[9], employing extended Hückel cal-

culations, predicted that acceptor substituents (e. g. CN) at the 2,4,6,8 positions should enhance the rate of rearrangement while donor groups (e. g. F) in those positions should have the opposite effect. The effects of these substituents in the 1 and 5 positions are reversed. Dewar^{[10][11]} reached similar conclusions on the basis of MINDO/2 calculations.

Subsequent studies using geometry optimization and including some configuration interaction in MNDO $^{[12]}$ and AM1 $^{[13]}$ calculations further confirmed the above trends and even lead to the predictions that semibullvalene 2,4,6,8-tetracarbonitriles as well as the 2,6- and 2,4-dicarbonitriles should have bishomobenzene ground state structures. Other features that are predicted computationally to favour the homoaromatic ground state are symmetrical replacement of carbon atoms of the allylic moieties by nitrogen $^{[11]}$ and small ring annelation across positions 1 and 5, $^{[12][14][15]}$ and also across positions 2 and 8, 4 and 6. $^{[14][15]}$

A number of experimental values for the barriers of the degenerate Cope rearrangement have been reported for the parent barbaralane $^{[16][17][18]}$ and semibullvalene, $^{[19][20]}$ substituted barbaralanes $^{[17][21][22][23][24][25][26][27][28][29][30][31]}$ and semibullvalenes, $^{[32][33][34][35][36][37][38][39][40]}$ as well as for heterobarbaralanes $^{[41][42]}$ and heterosemibullvalenes, $^{[40][43]}$ In this paper we present data for additional systems which provide us with some quantitative answers concerning the effects of the nature and positions of substituents on the free enthalpies of activation of the rearrangements. The total data now available allows us to assess the directions that offer the best chances of realizing a true, fully delocalized bishomobenzene.

Methods

Scope and Limitations

In order to assess the rate enhancing effects of substituents on the degenerate Cope rearrangement we have con-

fined our attention to barbaralanes and semibullvalenes symmetrically substituted in the 2,6 or 3,7 positions, principally by π -acceptor groups, which semiempirical MO calculations indicate to be the most effective for lowering the Cope barrier. We have also included some other substituents and some examples of 1,5-bridged semibullvalenes 7 and 8.

The rate studies have all been performed by line-shape analysis of variable-temperature carbon-13 spectra obtained at 126 and 151 MHz. This method has the advantage, that the differences in chemical shifts (Δv) for the exchange-related carbon nuclei (2,8 and 4,6) under slow-exchange conditions are of the order of 10^4 Hz, so that in many cases meaningful rate data can be obtained over a wide temperature range. A disadvantage of the large values of Δv is that it is not feasible to collect data at or near the coalescence temperatures where the accuracy of line-shape analysis is highest. Accordingly, rates must be obtained from measurements of line widths at half hight (W) in the fast- and slow-exchange temperature ranges for which eq. 1 and eq. 2, respectively, apply.

$$k = \frac{\pi(\Delta v)^2}{2 W_{\text{ex}}}$$
 fast exchange (1)

$$k = \pi W_{\text{ex}}$$
 slow exchange (2)

Since the contribution of exchange $(W_{\rm ex})$ to the total line width of a signal must be separated from other contributions $(T_2$, field inhomogeneity, etc.) there is a lower limit on the ΔG^{\neq} of the process which can be determined by this method. Assuming that the frequency difference in the limit of slow exchange Δv is about $1.5\cdot 10^4$ Hz and, because of instrumental problems and/or limitations in solubility in suitable solvents, the lowest accessible temperature is ca. $100~{\rm K}$ we estimate this limit to be $\Delta G^{\neq}_{100} \approx 8.3~{\rm kJ~mol^{-1}}$ corresponding to $k \approx 10^8~{\rm s^{-1}}$ at that temperature. All the compounds studied here involve slower Cope rearrangements.

An alternative way for the determination of rates of exchange might be offered by EXSY experiments in the region of slow exchange. [44] This method is not feasable for the present purpose, however, because this region is reached, in most cases, only at very low temperatures where the required long-time measurements meet considerable experimental difficulties.

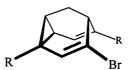
Estimation of Carbon-13 Chemical Shifts for Non-Exchanging Valence Tautomers

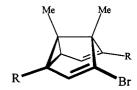
We first note that an error $\Delta\Delta\nu$ in the value of $\Delta\nu$ and an error $\Delta W_{\rm ex}$ in the value of $W_{\rm ex}$ translate only into small errors $\Delta\Delta G^{\neq}$ in the free enthalpy of activation ΔG^{\pm} because of the logarithmic relationship of eq. 3 derived from eq. 1 and the Eyring equation. For example, experimental errors of 10% result, according to eq. 4 and 5 which are derived from eq. 3 with $\Delta f(x) = f(x + \Delta x) - f(x)$, in errors $\Delta\Delta G^{\pm}$

of -0.32 and 0.16 kJ mol⁻¹, respectively, at a temperature of 200 K.

$$\Delta G^{\neq} = RT \left[\ln \frac{k_B T}{h} - \ln \frac{\pi (\Delta \nu)^2}{2W_{\text{ex}}} \right]$$
 (3)

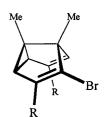
 $k_B = Bolzmann's$ constant, h = Planck's constant


$$(\Delta \Delta G^{\sharp})_{T,W_{\text{ex}}} = -2RT \ln \left(1 + \frac{\Delta \Delta \nu}{\Delta \nu}\right) \tag{4}$$


$$(\Delta \Delta G^{\neq})_{T,\Delta \nu} = RT \ln \left(1 + \frac{\Delta W_{\rm ex}}{W_{\rm ex}} \right)$$
 (5)

For most compounds studied here, Δv can be directly measured at low temperatures and the assumption that its value is the same at temperatures corresponding to fast exchange will certainly not introduce significant errors since the temperature dependence of $^{13}\text{C-chemical}$ shifts rarely exceeds 0.02 ppm K^{-1} . [45]

For certain 2,6-substituted 1,5-dimethylsemibullvalenes (3d and e) and the 1,5 annelated semibullvalenes (7a, 8a), slow-exchange spectra could not be obtained, even at 151 MHz, and the calculation of rate constants for their Cope rearrangements therefore necessitates the use of estimated values of Δv . We previously used chemical shift data for 4bromo derivatives of 2,6-substituted semibullvalenes [34] and barbaralanes [25a][26], which exist only as single valence tautomers, and assumed that the values of Δv were the same for the parent compounds. With the availability of higherfield spectrometers, however, we have been able to reach the low-temperature limit for several compounds for which the 4-bromo derivatives are also available, viz. 9d^[25a], 9i^[26] and 10a^[33b], 10d^[34], 11i, and have thus been able to test this assumption. The appropriate data are presented in Table 1. We see, in fact, that the values predicted by the 4-bromo models vary appreciably from one system to another and that a generally applicable correction for the presence of the bromine atom is not feasible. Because of this and because in any case some of the required 4-bromo derivatives are unavailable, we have used an alternative approach for the estimation of Δv .


All barbaralanes and semibullvalenes that possess the same substitution pattern of their allylic parts and could be investigated in the limit of slow exchange are presented in Table 2. We note that for the 3,7-substituted series (2, 4), in cases where the comparison can be made, the differences between $\Delta\delta_{6,2}$ (= $\Delta\delta_{4,2}$) for the barbaralane and the semibullvalene are very similar, being equal to that observed for the parent hydrocarbons. In the one case where we can make the comparison between the 3,7 and 2,6-substituted series [(2h-4i) vs. (1h-3h)], there is rather close agreement. Accordingly, we have assumed that this is also true for the dinitriles and diesters and have estimated the values of $\Delta\delta$ for 3d and e by subtracting the differences found for the appropriate pairs of 3,7 derivatives (2d, 4d: 15.7 ppm; 2e, 4e: 15.4 ppm) from the values of $\Delta\delta$ of the corresponding

10

9

11

Table 1. Comparison of $\Delta\delta_{6,2} = \delta_6 - \delta_2$ for barbaralanes 1 and 1,5-dimethylsemibullvalenes 3 and 4 with those for their 4-bromo derivatives 9–11, respectively

Cpd.	R	T[K]	$\Delta\delta_{6,2}$	Difference	Ref.
1d	CN	128	91.4		this work
9d	CN	183	88.5	2.9	[25a]
1k	4-tBu-C ₆ H ₄	105	100.1		this work
9j	Ph	243	96.2	3.9	[26]
3a	Н	108	87.3		[20]
10a	Н	146	94.7	- 7.4	[20]
		150	94.6	- 7.3	[33b]
4d	CN	130	99.8		[43]
11d	CN	163	106.4	- 6.6	[33b]
4i	$4-tBu-C_6H_4-SO_2$	123	97.0		this work
11i	$4-tBu-C_6H_4-SO_2$	144	100.4	-3.4	this work

2,6-substituted barbaralanes **1d** and **1e**, respectively. The errors associated with this assumption are almost certainly less than from other sources (see below).

Table 2. Differences $\Delta\delta$ [ppm] in chemical shifts for exchange-related carbon atoms of barbaralanes (B) and semibullvalenes (S) from low-temperature (slow-exchange limit) carbon-13 spectra or estimated as described in the text (in italics); $\Delta\delta_{x,y}=\delta_x-\delta_y$

R	Cpd.	$\Delta\delta_{6,2}B$	Cpd.	$\Delta\delta_{6,2}S$	$\Delta\delta_{6,2}B-\Delta\delta_{6,2}S$	
Н	1a	103.1[17]	3a	87.3[20]	15.8	
CN	2d	115.5[17]	4d	99.8[43]	15.7	
CO ₂ Me	2e	111.3	4e	95.9	15.4	
PhSO ₂	2h	110.2	4i	97.0[a]	13.2	
Ph	2j	97.8	4j	82.2[43]	15.6	
		$\Delta\delta_{6,2}$ B $\Delta\delta_{4,8}$ B		$\Delta\delta_{6,2}$ S $\Delta\delta_{4,8}$	$\begin{array}{ccc} \Delta\delta_{6,2}B & \Delta\delta_{4,8}B \\ -\Delta\delta_{6,2}S & -\Delta\delta_{4,8}S \end{array}$	
CN	1d	91.4 97.5	3d	75.7 83.7		
CO ₂ Me	1e	96.0 103.1	3e	80.6 87.7		
PhSO ₂	1h	92.0 107.3	3h	80.1 96.1 (78.8) (94.1)	11.9 10.8	

 $^{^{[}a]}$ The *tert*-butyl groups at the *para* position of the phenyl rings of **4i** improve the solubility at low temperatures. Their influence on $\Delta\delta_{6,2}$ was neglected.

Estimation of Line Widths in the Absence of Exchange

The observed line widths $(W_{\rm obs})$ of resonances of nuclei undergoing exchange at rates comparable with the NMR time scale also contain contributions from other sources, e. g. spin spin relaxation (T_2) , magnetic field inhomogeneity, and incomplete spin decoupling, which must be subtracted to give $W_{\rm ex}$ used in eqs. 1 and 2. The errors introduced in estimating these contributions are, of course, most serious as the fast- and slow-exchange limits are approached. For this reason we have tried to confine the data to temperature regions for which the corrections $W_{\rm ref} = W_{\rm obs} - W_{\rm ex}$ are less than 10% of $W_{\rm obs}$

The way in which we have estimated the line width in the absence of exchange, i. e. W_{ref} in Tables 8–12, varies from one structure to another and is given explicitly in the Experimental Section for each of the compounds studied. Here we point out some of the general considerations regarding these estimates. At high temperatures (> 250 K), the only significant contributions to the line width in the absence of exchange are the inhomogeneity of the applied field and, in the case of proton-bearing carbon nuclei, a small residual broadening (0.5-1 Hz) due to incomplete proton decoupling. In this temperature range, any estimate of resolution (e. g. a solvent line in the proton spectrum) serves to provide an estimate of the almost negligible correction to $W_{\rm obs}$ of exchanging quaternary carbon nuclei, provided the decoupling channel is carefully tuned at each temperature. At lower temperatures, spin spin relaxation (T_2) becomes significant and eventually the dominant source of line broadening and must be estimated in other ways. In case of poor signal-to-noise ratios or very broad signals, FIDs, that were recorded at 151 MHz spectrometer frequency, were multiplied with small line broadening factors, which never exceeded 3 Hz. Because they affected both $W_{\rm obs}$ and $W_{\rm ref}$ very similarly, the errors introduced in this way were smaller than the deviation between repeated calculations of the exchange broadening $W_{\rm ex}$ from the same FID.

In the 3,7-substituted barbaralanes 2, a careful study of the parent hydrocarbon **1a** reveals that the correction to $W_{\rm obs}$ for C-2,4,6,8 is closely approximated by W for C-9. We have compared (Table 3) the line widths for the nuclei C-9 and C-3,7, which are unaffected by exchange, as a function of temperature and proton decoupling frequency. It can be seen that, at their optimal decoupling frequencies, W for C-9 and C-3,7 are almost equal and, indeed they are when the decoupler frequency is set to its normal value in the "middle" of the proton spectrum. We have therefore used W for C-9 as the correction to $W_{\rm obs}$ of C-2,8 and C-4,6 in this series. That T_2 for C-9 is not approximately twice as short as that for C-3,7 is somewhat surprising and must be due to the longer carbon hydrogen bonds in the methylene group, and/or to the correlated reorientation of the C-H bond vectors.

In the case of the 2,6-substituted barbaralanes 1, W of C-9 again provides a correction for that of C-4,8 but not of course for that of the quaternary carbons C-2 and C-6. Semibullyalenes pose a more difficult problem. In the 2,6-

Table 3. Comparison of the line widths [Hz] of C-9 and C-3,7 of barbaralane ${\bf 1a}$ and the solvent chlorodifluoromethane (central line of the triplet) as a function of the proton decoupler frequency (expressed as δ^* [ppm] at 600.13 MHz) and temperature

<i>T</i> [K]	δδ*	$= \delta\delta \text{ or }$ $= 6.20$		$\delta\delta^*$ = middle of proton spectrum = 4.50			$\delta\delta^* = \delta\delta \text{ of 9-H}$ $= 1.90$		
	C9	C3,7	CHCIF ₂	C9	C3,7	CHCIF ₂	C9	C3,7	CHCIF ₂
303	1.42	1,25	1.83	0.90	1.12	2.00	0.97	1.92	6.63
270	1.35	1.14	1.70	0.92	1.13	1.79	0.92	1.59	7.03
250	1.83	1.23	1.69	1.15	1.46	1.85	1.08	1.90	6.08
210	1.97	1.62	2.40	1.67	1.62	2.64	1.71	2.08	8.42
190	3.17	2.30	3.27	2.40	2.26	3.45	2.35	2.74	8.68
175	3.28	2.63	3.60	2.83	2.65	3.78	2.87	2.90	10.03
160	3.70	3.72	4.08	3.60	3.75	4.61	3.38	3.82	10.90

substituted series **3** and **5** there is no carbon atom that is unaffected by exchange on which to base estimates of line widths in the absence of exchange. In the 3,7-substituted semibullvalenes **4** ($R \neq H$) and **6h–8h**, the exchange-invariant carbon atoms, i. e. C-3,7, are quaternary and hence their line widths are not appropriate estimates of those of C-2,4,6,8 in the absence of exchange. With the 1,5-substituted (**3a**) or 1,5-annelated derivatives (**7a**, **8a**) that have no other substituents, the line width of the C-3,7 resonance can be used. Line width data for carbon atoms of phenyl groups prove useful for some systems (**1h**, **j**, **k**, **3h**, **4h**, **i**, **l**, **5h–8h**).

The Activation Parameters

Accurate determinations of the parameters of the Arrhenius and Eyring equations from the types of experiments used here present considerable difficulty. Ideally, they require measurements at 10-20 temperatures, divided between the fast- and slow-exchange rate regimes, with high signal-to-noise ratio and with careful tuning of both proton and carbon-13 channels between measurements. Usually a compromise between the optimum time for the total experiment and the availability of the spectrometer, as well as its overall long-term stability at low temperatures, necessitates use of less than optimal signal-to-noise and experiments at fewer than the optimal number of temperatures to be performed. In addition to these problems, other sources of errors, both random and systematic, may affect the accuracy of the determination of the activation parameters. Some of these are implicit in the preceding section. Furthermore, measurements of line widths are performed by fitting to a Lorentzian line shape which may not always be strictly valid. In addition, it is always necessary to assume that the frequency difference in the absence of exchange, Δv , is invariant with temperature although it is sometimes possible to test this assumption over a small range of temperatures in the slow-exchange region. [17]

As an inspection of the Eyring diagrams shows (Figures 1-4), errors in the temperature are most serious at low temperatures where calibration is difficult, because, so far, precise NMR shift thermometers were limited to temperatures above 175 K. [46] [47] In most experiments, we employed a

recently developed high-precision carbon-13 shift thermometer (temperature range $100-300~\rm{K})^{[48]}$ and thus are able to estimate the temperature error at 1 K.

A considerable number of variable-temperature NMR experiments have been duplicated in two different laboratories on spectrometers of different frequencies as well as

Figure 1. Eyring diagrams for the degenerate Cope rearrangement of the hydrocarbons barbaralane (1a), 1,5-dimethylsemibullvalene (3a), 1,5-trimethylenesemibullvalene (7a) and 1,5-tetramethylenesemibullvalene (8a)

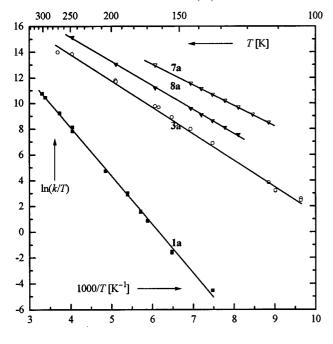


Figure 2. Eyring diagrams for the degenerate Cope rearrangement of disubstituted barbaralanes, viz. 2,6-bis(trifluoromethyl)barbaralane (1c), 2,6-barbaralanedicarbonitrile (1d), dimethyl 2,6-barbaralanedicarboxylate (1e), 2,6-bis(4-*tert*-butylphenyl)barbaralane (1k), dimethyl 3,7-barbaralanedicarboxylate (2e) and 3,7-diphenylbarbaralanedicarboxylate (

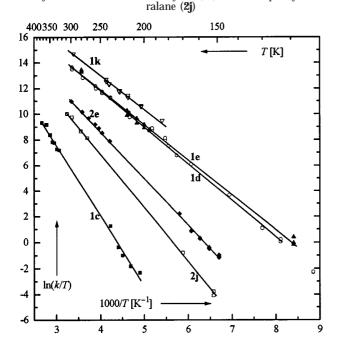


Figure 3. Eyring diagrams for the degenerate Cope rearrangement of disubstituted 1,5-dimethylsemibullvalenes, viz. dimethyl 1,5-dimethyl-2,6-semibullvalenedicarboxylate (3e), 1,5-dimethyl-2,6-semibullvalenedicarbonitrile (3d), 1,5-dimethyl-2,6-bis(phenylsulfonyl)semibullvalene (3h), 1,5-dimethyl-3,7-bis(4-tert-butylphenylsulfonyl)semibullvalene (4i), and 3,7-bis(3-methoxyphenyl)-1,5-dimethylsemibullvalene (4m)

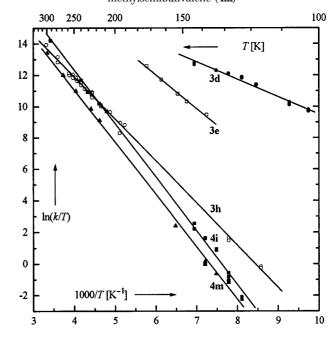
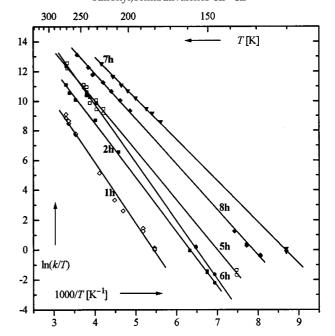



Figure 4. Eyring diagrams for the degenerate Cope rearrangement of the bis(phenylsulfonyl)barbaralanes ${\bf 1h}$, ${\bf 2h}$ and the bis(phenylsulfonyl)semibullvalenes ${\bf 5h-8h}$

on the same instrument (1a, k, 2e, 3a at 151 MHz). While satisfactory agreement between the two sets of data was observed in most cases, only those obtained at the highest field are listed in Tables 8-12 and employed in the calculations of the activation parameters.

By tradition, Arrhenius and Eyring parameters are calculated from rate vs. temperature data by the *linear* least-squares method according to the equations $\ln k = a - b/T$ and $\ln(k/T) = a - b/T$, respectively. Since a relatively large set of k data from a broad temperature range was available

for several compounds, we calculated the Eyring parameters by a *nonlinear* least-squares fit according to $k=aT\exp(b/T)$ for the barbaralanes **1a**, **d** and the semibullvalenes **3a** and **h**. The results are included in Tables 4 and 5 and demonstrate that both methods yield the same values for ΔG^{\neq} at 200 K (within ca. 0.5 kJmol⁻¹). The enthalpies and entropies of activation, that were calculated with both the *linear* and the *nonlinear* least-squares method, differed by up to 2.5 kJ mol⁻¹ and 10 J mol⁻¹K⁻¹, however, as shown for **3h**. For the sake of consistency with previous work and

Table 4. Parameter of the Eyring equation for the degenerate Cope rearrangement of barbaralanes 1 and 2; data that are based only on line widths obtained in the fast-exchange regime are given in square brackets; enthalpies (ΔH^{\pm}) and free enthalpies of activation at 200 K (ΔG^{\pm}_{200}) are in kJ mol⁻¹ K⁻¹, entropies of activation (ΔS^{\pm}) in J mol⁻¹ K⁻¹, and temperatures in Kelvin; the errors are statistical errors of regression analyses; the errors given in brackets [%] result from the analysis of kinetic errors devised by Benson^[49] which was was performed according to the formulae given by Heinzer and Oth^[50]

Cpd	. R	ΔΗ≠	<i>∆S</i> *	∆G [≠] 200	T	[a]	Ref.
1a	Н	31.71 ± 0.37 (1.5)	$-3.34 \pm 2.02 (24.4)$	32.38 (0.59)	134 – 302	C/E	this work
		30.74 ± 0.21	-6.46 ± 0.65	32.04		[b]	this work
		30.54 ± 0.33 (1.6)	$-2.47 \pm 1.55 (70.9)$	31.03	146 – 305	F/S	[17]
		$30.71 \pm 0.21 \ (1.8)$	$-3.64 \pm 1.05 (99.7)$	31.44	146 - 305	F/S	[17]
		` '	` '	32.1	184 - 204	[c]	[16]
				[31.9]	174 – 307		[18a]
		30.63	-3.05	31.24	• • • • • • • • • • • • • • • • • • • •	S	[18b]
lc	CF ₃	45.10 ± 0.77 (1.4)	$1.02 \pm 2.88 $ (50.4)	44.89 (0.55)	204 – 373	C/E, D, T	this work
d	CN	$23.87 \pm 0.17 (1.7)$	$-3.45 \pm 0.97 (39.3)$	24.56 (0.63)	113 – 257	C/E	this work
		24.02 ± 0.53	-4.03 ± 1.78	24.83		[b]	this work
			2 1.10	[24.3]	209 – 249	$D^{[e]}$	[25a]
e	CO ₂ Me	22.45 ± 0.38 (1.6)	-9.14 ± 2.18 (26.4)	24.28 (0.63)	119 – 280	C/D	this work
1f	Cl			36.4	178 – 298	D ^[e]	[28]
1h	PhSO ₂	33.80 ± 0.75 (1.7)	$-13.21 \pm 3.30 (36.7)$	36.44 (0.57)	183 – 303	A	this work
1j	Ph	[19.54±0.62 (1.9)	$-13.81 \pm 2.97 (24.4)$	22.30 (0.65)]	175 – 302	C/E[e]	this worl
-,		(15.5 (2 0.02 (1.5)	15.01 ±2.57 (= 1.1)	[21.6]	169 – 233		[26]
1k	4-tBu-C ₆ H ₄	$[21.63 \pm 0.47 (1.9)]$	-3.17 ± 2.05 (9.2)	22.27 (0.65)]	185 – 295	C/E ^[d]	this worl
1n	4-MeO-C ₆ H	4		[21.1]	192 – 271	$\mathbf{D}^{[e]}$	[29]
1o	4-pyridyl			[20.1]	146 – 238	D[e]	[29]
1p	4-pyridyl•HC	CI		[<17.2]	163 – 294	W[e]	[29]
1q	4-pyridyl-N-	oxide		[17.2]		$D^{[e]}$	[29]
1r	2-furyl			[17.2]		[e]	[30]
2b	Me	$39.41 \pm 0.50 \ (1.5)$	$-1.72 \pm 2.22 $ (78.8)	39.55 [37]	172 – 307 206	F/S [d]	[17] [23]
2d	CN	29.50 ± 0.38 (1.8)	$-12.43 \pm 2.34 \ (29.5)$	31.99	148 – 306	B/D	[17]
2e	CO ₂ Me	30.46 ± 0.18 (1.6)	$-3.65 \pm 1.03 $ (31.1)	31.19 (0.59)	149 – 299	C/D/E	this work
2g	Br	$33.72 \pm 0.71 \ (1.5)$	$-16.15 \pm 3.31 \ (16.9)$	36.95	159 – 306	F/S	[17]
2h	PhSO ₂	$30.18 \pm 0.26 \ (1.5)$	$-5.98 \pm 1.41 $ (30.0)	31.38 (0.59)	148 – 303	A/C	this work
2j	Ph	$34.69 \pm 0.32 \ (1.5)$	$-1.30 \pm 1.60 $ (126)	34.95 (0.58) 34.5	152 - 308 206 - 240		this work

 $^{^{[}a]}$ Solvents (ratios of solvent mixtures are given in the Tables in the Experimental Section): $A=[D_6]$ acetone, B= dichlorodifluoromethane, C= chlorodifluoromethane, $D=[D_2]$ dichloromethane, $E=[D_6]$ dimethyl ether, $F=[D_8]$ tetrahydrofuran, $M=[D_4]$ methanol, S= carbon disulfide, $T=[D_8]$ toluene. - $^{[b]}$ Nonlinear least-squares regression analysis according to k= a Texp(b/T). - $^{[c]}$ From proton spectra. - $^{[d]}$ Line widths in the limit of slow exchange were not used in the calculation. - $^{[e]}$ The limit of slow exchange has not been reached.

because the nonlinear method requires larger data sets of particularly high quality, which are not always available, we preferred the linear least-squares method.

Results

The Eyring diagrams of nine barbaralanes and twelve semibullvalenes of the total of 25 compounds that we have studied are displayed in Figures 1-4. Figure 1 comprises the plots for the hydrocarbons that lack substituents at their allylic parts. The lines for disubstituted barbaralanes and 1,5-dimethylsemibullvalenes are plotted in Figures 2 and 3,

respectively, while the results from six phenylsulfonyl compounds are compiled in Figure 4. In all cases, straight lines were obtained without any suggestion of a curvature. A cursory inspection shows that most lines approximately converge on about the same point at the vertical axis thus indicating similar entropies of activation. Furthermore, the statistical errors in the activation parameters may be anticipated being small.

The enthalpies and entropies of activation for degenerate Cope rearrangements of the barbaralanes and semibullvalenes of the present work were computed by a linear least-squares treatment of the rate vs. temperature data, compiled in the Experimental Section (Tables 8-12), and are listed

Table 5. Parameter of the Eyring equation for the degenerate Cope rearrangement of semibullvalenes **3–8**; data that are based only on line widths obtained in the fast-exchange regime are given in brackets; enthalpies (ΔH^{\neq}) and free enthalpies of activation at 200 K (ΔG^{\neq}_{200}) are in kJ mol⁻¹ K⁻¹, entropies of activation (ΔS^{\neq}) in J mol⁻¹ K⁻¹, and temperatures in Kelvin; the errors are statistical errors of regression analyses; the errors given in brackets [%] result from the analysis of kinetic errors devised by Benson, [49] which was performed according to the formulae given by Heinzer and Oth [50]

Cpd	l. R		ΔH [≠]		∆S*	∆G [≠] 200	T	[a]	Ref.
3a	Н		± 0.30 (1.6) ± 0.09		± 2.15 (1.7) ± 0.35	19.85 (0.68) 19.64	104 – 271	C/E [b]	this work
			± 0.54 (2.3) ± 7.5 (2.9)		± 3.35 (48) ± 5.56 (78)	19.90] 20.43	132 - 211 108 - 168		[20] [20]
3d	CN	[9.19	± 0.39 (4.8)	-26.24	± 3.26 (12.8)	14.44 (0.80)] [13 ^[d]]	103 - 144 115	C/E[c]	this work [34]
3e	CO ₂ Me	[17.70	± 0.75 (5.1)	8.62	±4.90 (73.3)	15.97 (0.76)]	138 173	C/D[c]	this work
3g	Br	31.38	± 0.50 (1.9)	1.26	± 2.59 (162)	31.13	156 – 251	D/V	[20]
3h	PhSO ₂		± 0.28 (1.6) ± 0.38		± 1.57(132) ± 1.18	24.24 (0.63) 24.83	117 – 301	A/C, C/E [b]	this work this work
4d	CN	23.4	± 0.8	-5.0	± 13	24.4	128 – 197	C/D	[43]
4e	CO ₂ Me	21.00	± 0.49 (1.8)	-14.86	± 2.66 (16.8)	23.98 (0.64)	108 - 247	C/E	this work
4f	Cl	20.9	± 0.9	-2.6	± 1.9	21.4	118 – 198	E/F	[40]
4h	PhSO ₂	[25.03	± 1.18 (3.2)	1.08	± 5.16 (945)	24.81 (0.63)]	205 – 247	C/D[c]	this work
4i	4-tBu-C ₆ H ₄ SO ₂	28.25	± 0.39 (1.5)	17.53	± 2.51 (8.8)	24.74 (0.63)	123 – 292	C/E	this work
4j	Ph	25.5	± 0.8	-0.8	± 1.3	25.7	133 – 197	E	[43]
41	4-Me-C ₆ H ₄	28.66	± 0.81 (1.5)	6.90	± 4.39 (19.6)	27.28 (0.61)	128 - 301	C/D	this work
4m	3-MeO-C ₆ H ₄	27.76	± 0.46 (1.5)	5.81	± 2.88 (30.5)	26.60 (0.62)	129 - 253	C/D/E	this work
5a	Н	20.1 21.92	± 0.8 ± 0.38 (2.1)	-22.6 -13.56	± 13 ± 2.30 (37)	24.6 24.63	106 - 170 141 - 211	_	[19] [20]
5h	PhSO ₂	27.66	± 0.46 (1.5)	-3.68	± 2.08 (88.6)	28.40 (0.78)	134 – 300	C/E	this work
6h	PhSO ₂	32.61	± 0.57(1.5)	14.08	± 3.20 (12.5)	29.80 (0.73)	144 – 302	C/E	this work
7a	Н	[13.43	± 0.03 (3.7)	-8.25	± 0.20 (41.4)	15.08 (0.60)]	113 – 165	C/E[c]	this work
7h	PhSO ₂	22.97	± 0.14(1.9)	2.11	± 0.82 (61.5)	22.55 (0.60)	115 – 240	C/D	this work
8a	Н	[15.56	± 0.16(2.0)	-9.46	± 1.06 (17.1)	17.45 (0.65)]	123 – 247	C/E[c]	this work
8h	PhSO ₂	25,40	± 0.18(1.7)	2.51	± 1.11 (10.5)	24.90 (0.63)	116 – 248	A/C	this work

 $^{^{[}a]}$ Solvents (ratios of solvent mixtures are given in the Tables in the Experimental Section): Table 4, R = bromotrifluoromethane, V = vinyl chloride. $-^{[b]}$ Nonlinear least-squares regression analysis according to $k = aT\exp(b/T)$. $-^{[c]}$ The limit of slow exchange has not been reached. $-^{[d]}\Delta G^{\pm}$ at 115 K. $-^{[e]}$ From proton spectra.

in Tables 4 and 5, respectively, which also include the results of early studies by von E. Doering, [16] Anet, [19] and Kessler^[23] and their co-workers, and more recent investi-Günther, [17] [20] Müllen, [40] [43] gations by Schröder^{[18][28][29][30]} and their groups. Eyring parameters ΔH^{\neq} and ΔS^{\neq} that are based only on rate data of the fastexchange regime are given in square brackets. In a single case, viz. 1k (Table 8), the quality of the spectrum from the slow-exchange region (ca. 100 K) allowed only the determination of the shift difference of the exchange-related carbon atoms but not of the corresponding line widths. The Tables 4 and 5 also contain the statistical errors of the leastsquares regression analyses and the percentage errors from the error propagation treatment of kinetic data that has been devised by Benson^[49] and detailed for activation parameters by Heinzer and Oth. [50]

We note that, for the 11 barbaralanes and 15 semibullvalenes for which rate data was obtained in the fast- and slowrate regions, the average ΔS^{\neq} value is ca. $-4 \pm 8 \text{ J mol}^{-1}$ K^{-1} . The translational and rotational partition functions for ground and transition states of the Cope rearrangements of semibullvalene and barbaralane themselves should be very similar since orientation of solvent molecules is expected to be unimportant. This is presumably also true for derivatives with atomic, linear, or methyl substituents. It may not be true for compounds with substituents that need to adopt different conformations in the ground and transition states. In contrast to ΔH^{\neq} and ΔS^{\neq} , the free enthalpy of activation, ΔG^{\neq} , can be determined rather accurately since in most cases this involves an interpolation of the rate vs. temperature data. We will therefore base our evaluation of substituent effects on this quantity but we will draw attention to those special cases where conformational aspects may cause a problem. ΔG^{\neq} was calculated for the arbitrarily chosen intermediate temperature of 200 K that we have introduced previously for the purpose of comparison. [26] This temperature offers the advantage, that a short extrapolation is necessary only for a small number of the compounds studied, viz. 1c, 3e, d and 7a.

The degenerate Cope rearrangement of substituted semibullvalenes and barbaralanes may be complicated by conformational ambiguities unless the substituents exhibit local symmetry $C_{\infty v}$, like halogen atoms or the cyano group, or C_{3v} associated with very low barriers like methyl and trifluoromethyl groups. In the 2,6-substituted series 1 and 3, the conformation at the cyclopropane ring (C2) of substituents that have lower local symmetry differs from that at the double bond (C6), that is, the corresponding torsional angles involving the bonds to the substituents are different. This has been shown for the solid state by a number of X-ray diffraction analyses (1h, 1j, [51] 3h, 5h [52]) and most probably is true for the molecules in solutions. If those conformations are maintained during the Cope rearrangement, such substituents would eventually end up with a different, less favorable torsion angle. Rotation would be required to restore the initial conformations. In reality, both processes are, of course, correlated. As long as these changes of torsional angles are small and rotational potentials flat, the

conformational contributions to the activation parameters are small. This holds for phenyl and phenylsulfonyl groups at the 2,6 positions as in **1h**, **1j**, **3h** and **5h**, respectively, where the changes of the torsional angles may be estimated from X-ray data^{[51][52]} to be less than 60° (**1h**: 51, 53°; **1j**: 34°; **5h**: 58°). Furthermore, flat torsional potentials of phenyl rings have been demonstrated for 2-phenyl- and 2,6-diphenylhomotropilidene, ^[53] phenylcyclopropane, ^[54] and α -methylstyrene ^[55], which may be taken as references for comparison.

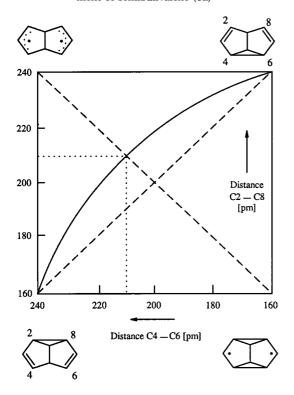
In the series of 3,7-substituted barbaralanes 2 and semibullvalenes 4, 6h-8h, the substituents are attached at carbon atoms that are *not* exchanged by the Cope rearrangement. Conformational effects are expected to be small for phenyl groups (2j, 4j, 4l, 4m) whose planes certainly lie close to the plane of the double bonds. According to X-ray diffraction analyses, phenylsulfonyl groups adopt different conformations at the two sides (C3 and C7) of each semibullvalene 4h-8h^[52] but similar conformations at C3 and C7 of barbaralane 2h. [56] As shown by carbon-13 spectra recorded for solutions in the temperature range of slow exchange, both sides of 4h-8h are still equivalent on the NMR time scale at those temperatures. This attests to low barriers for the rotations around the S-C3 and S-C7 bonds. In addition, twisting around these bonds, which is required for degeneracy of the valence isomerisations (vide supra), is small as may be estimated from X-ray data (2h: 47, $60^{\circ [56]}$; **4h**: 11, 58°; **6h**: 0, 34°; **7h**: 11, 67°; **8h**: 6, $60^{\circ [52]}$). Therefore, we conclude that conformational effects by phenylsulfonyl groups raise the barrier for the degenerate exchange of 2h and 4h-8h very little if at all.

A different situation is presented by the dimethyl 3,7barbaralane- and 3,7-semibullvalenedicarboxylates 2e^[56] and $4e^{[57]}$ whose ester groups and double bonds are virtually coplanar and adopt the s-trans conformation at both sides according to X-ray diffraction analyses. Different pathways may be envisaged for the degenerate exchange. No matter which of the two possible symmetrical conformations is preferred in solution, Cope rearrangement of the skeleton converts it into the less stable symmetrical conformation which subsequently relaxes by 180° rotations at both sides, for example $(s-trans)_2$ -4e $\rightarrow (s-cis)_2$ -4e' $\rightarrow (s-cis)_2$ -4e' trans, s-cis)- $\mathbf{4e}' \rightarrow (s\text{-trans})_2\mathbf{-4e}'$. The second pathway involves both unsymmetrical conformations (s-cis, s-trans)-4e and (s-trans, s-cis)-4e' whose interconversion by Cope rearrangement is degenerate in every respect. The latter pathway is lower in energy by the energy difference between the s-cis and s-trans conformations and hence followed irrespective of the predominating conformation in solution. If this is a symmetrical one, the degenerate valence isomerisations of 2e and 4e resemble that of homotropilidene, which involves a conformational change and a Cope rearrangement. [7] [58]

Unfortunately, the *s-cis/s-trans* conformational preference of enoates is not straightforward. So far, mostly *acyclic* enoates have been studied experimentally $^{[59]}$ and by ab initio calculations, $^{[60][61]}$ which give an estimated rotational barrier of 31 kJ mol $^{-1}$, relative to the (slightly more stable)

s-cis conformation, for methyl acrylate [60]. This value falls within the range of activation enthalpies for s- $cis \Rightarrow s$ -transinterconversions of enoates determined experimentally (21-33.5 kJ mol⁻¹). [62] Methyl carboxylates derived from bicyclo[3.3.0]oct-2-ene and -octa-2,6-diene, [63] and bicyclo[-3.3.1]nona-2,6-diene [51] [56] prefer either the s-cis [51] or the s-trans conformation [56] [63] as shown by X-ray diffraction analyses. Likewise, the ester groups at C4 and C6 of tetramethyl 2,4,6,8-barbaralanetetracarboxylate exist in the s-cis conformation, [27] while those of tetramethyl 1,5-dimethyl-2,4,6,8-semibullvalenetetracarboxylate adopt the s-cis conformation at one side but the s-trans conformation at the other. [64] These results demonstrate that the energetic similarity of acyclic s-cis and s-trans enoates [59] [60] [61] holds also for cyclic systems. Therefore, the energy difference between the s-cis and s-trans conformations adds probably little to the height of the barrier toward the valence isomerization of 2e and 4e.

Some information concerning the predominating conformations of the ester groups can be obtained from carbon-13 spectra of **4e** recorded in the slow-exchange regime (108 and 113 K). Each of the pairs of the terminal atoms of the allylic system, viz. the cyclopropane carbon atoms C2 and C8 and the vinyl carbons C4 and C6, give rise to *two* signals (ratio 3:2) which are separated by 0.39 and 1.54 ppm,


respectively. The higher intensity is observed for the downfield signal in case of the C4, C6 absorptions. The ratio is reversed for the C2, C8 absorptions. Obviously, the observed shift differences are caused by different conformations of the ester groups, which are interconverting slowly on the NMR time scale. Consequently, we interpret the low-temperature spectra in terms of the simultaneous presence of the unsymmetrical conformation (*s-cis*, *s-trans-*4e) and one of the symmetrical ones, either (*s-cis*)₂-4e or (*s-trans*)₂-4e in the ratio 4:1. Because the contributions to the exchange broadening $W_{\rm ex}$ of the Cope rearrangement and the rotation of the ester groups could not be separated on the basis of the available spectroscopic evidence, rate data for the slow-exchange limit were calculated only from the line widths of the two methyl signals.

Discussion

Any interpretation of substituent effects must be based on the relative weighting of transition state vs. reactant and product stabilisation, which depend on the respective geometric and electronic structures.

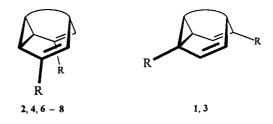

The precise timing of changes of any two bonds gives rise to a situation which may be expressed diagrammatically in terms of More O'Ferrall-Jencks energy surfaces. Since some twenty years, they provide a useful pictorial description of substituent effects on the transition states of Cope and Claisen rearrangements. [65] [66] [67] [68] [69] The structural coordinates for the degenerate Cope rearrangement of barbaralanes and semibullvalenes, are those for C2,8 bond breaking and for C4,6 bond making. They can be approximated by the distances C2-C8 and C4-C6 (Figure 5). By definition, the transition states of degenerate Cope rearrangements lie along the diagonal connecting the bis(allylic) and the diyl structures. [70] The precise position of the transition state for the parent semibullvalene (5a) on this diagonal may be inferred from recent quantum chemical calculations. On moving to the transition state structure, the C2-C8 and C4...C6 distances [159.4 and 241.0 pm in the (6,6)CASSCF/6-31G* geometry] are extended and contracted, respectively, to an interallylic distance of 211.7 pm (CASPT2N/6-31G* geometry). The CASSCF wave function of C_{2v} semibullvalene is dominated by a configuration that corresponds to the orbital occupancy of a fully delocalized aromatic species, but the second of the two most important configurations confers some diradical character to the bishomoaromatic systems. [15] This modest diradical character has its geometrical equivalent in the size of the interallylic distance, which is significantly longer than the average of the C2-C8 and C4···C6 distances in 5a, and corresponds to the view that relief of strain is the major driving force for the degenerate Cope rearrangement of bridged homotropilidenes. Considering Dewar's statement that the transition state becomes increasingly like a pair of allyl radicals as the length of that bridge is decreased, [10] we conclude that the transition state for the parent barbaralane 1a lies between that of semibullvalene and the center of the More O'Ferrall-Jencks diagram.

Figure 5. More O'Ferrall-Jencks diagram for the Cope rearrangement of semibullvalene (5a)

Substituents may modify the transition-state structure according to Thornton's "perpendicular effects". These substituent effects change the transition state geometry by perturbations of the vibrational potentials for the normal coordinate motions that are perpendicular to the reaction coordinate motion. [72] For the substituted degenerate barbaralanes and semibullvalenes, this variation reflects the delicate balance of the effects on the *three* limiting structures, viz. the bis(allylic) and 3,7-diyl structures at the corners of the More O'Ferrall-Jencks diagram and the homoaromatic structure in its center.

Regarding the ground state, we estimate the magnitude of substituent effects on the basis of two approximations. First we neglect subtle differences between barbaralanes and semibullvalenes and assume that substituents influence both systems in the same way. Second, we note that the two substitution pattern studied here differ, in the first place, by the position of only one of the two substituents. In the 2,6 series (1, 3) this is attached to the cyclopropane ring, while in the 3,7 series (2, 4, 6-8) both substituents occupy a vinylic position. Thus, we approximate the difference of the substituent effects on both series by the enthalpy change of the isodesmic reaction eq. 6, [73] which, for phenyl and nitrile groups, can be calculated from thermochemical data to be surprisingly small $[\Delta \Delta H^0_f(CN) = 0.4; \Delta \Delta H^0_f(Ph) = 1.8 \text{ kJ}]$ mol⁻¹]. [74] Hence differences between the 2,6 and 3,7 series appear to be mainly due to substituent effects on the transition states.

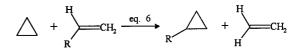


Table 6. Effect of substituents R on the degenerate Cope rearrangement of barbaralanes and semibullvalenes. $\Delta\Delta G^{\neq}$ [kJ mol $^{-1}$] is defined as $\Delta G^{+}(R) - \Delta G^{+}$ (R = H) for 200 K; the values of the parent compounds used are $\Delta G^{\pm}({\bf 1a})=32.38$ and $\Delta G^{\pm}({\bf 3a})=19.85.$ $\Delta\Delta H^{\neq}$ [kJ mol $^{-1}$] is the difference of the enthalpies of activation calculated by semiempirical methods for dicyanosemibullvalenes and the parent semibullvalene (5a) $^{[12][13]}$

	Bart	paralanes		Semibull	valenes
R _{2,6}	Cpd.	∆∆G [≠] ₂₀₀	Cpd.	∆∆G [≠] ₂₀₀	$\Delta\Delta H^{\neq}$
CF ₃	1c	12.5			
CN	1d	-7.8	3d	-5.4	-24.7,[a] -19.2[b]
CO ₂ Me	1e	-8.1	3e	-3.9	
Cl	1f	4.0			
Br				11.2, 10.7	:]
PhSO ₂	1h	4.1	3h	4.4	
			5h	3.8	
Ph	1j	-10.1			
4-tBu-C ₆ H ₄	1k	-10.1			
4-MeO-C ₆ H ₄	1n				
4-pyridyl	1o				
4-pyridyl·HCl		<-15.2			
4-pyridyl-N-oxide	1q	-15.2			
2-furyl	1r	-15.2			
R _{3,7}					
Me	2b	8.5[d]			
CN	2d	1.0[d]	4d	4.6	17.2.[a] 4.6[b]
CO ₂ Me	2e	-1.2	4e	4.1	,
CI			4f	1.6	
Br	2g	5.9[d]			
PhSO ₂	2h	-1.0	4h	5.0	
-			6h	5.2	
			7h	7.5	
			8h	7.5	
4-tBu-C ₆ H ₄ -SO ₂			4i	4.9	
Ph	2j	2.6	4j	5.9	
4-Me-C ₆ H ₄	-		41	7.4	
3-OMe-C ₆ H ₄			4m	6.8	

 $^{[a]}$ MNDO calculation with 2×2 CI for homoconjugated structures. $^{[12]}-^{[b]}$ AM1 calculation. $^{[13]}-^{[c]}$ Calculated with the two slightly different data sets for **3a** given by Günther et al. $^{[20]}-^{[d]}$ Calculated with the data for **1a** reported by Günther et al. $^{[17]}$

Inspection of Table 6, which summarizes the effects of substituents on the free enthalpies $\Delta\Delta G^{\neq} = \Delta G^{\neq}(R) - \Delta G^{\neq}(H)$ at 200 K of the degenerate Cope rearrangement for a number of semibullvalenes and barbaralanes, permits several observations and conclusions.

First, we consider substituents at the termini of the allylic moities (R₂ and R₆). (i) Only electron-withdrawing groups that are classified as π acceptors lower the barrier in accord with Hoffmann's predictions [9] and semiempirical calculations of 2,6-dicyanosemibullvalene. [12][13] The trifluoromethyl group, which Dewar suspected would lower the barrier, [10] in fact raises it considerably. Halogen substituents and the phenylsulfonyl group exert the same influence but to a lesser extent. (ii) The lowering of the barrier by π acceptor groups is more pronounced in barbaralanes than in semibullvalenes. (iii) The data in Table 6 confirm our previous finding that aryl groups at C2 and C6 are even more efficient than π acceptor groups. [26] (iv) Since both, the former and the latter interact by stabilizing both allyl radicals^[75] and delocalized systems, it is difficult to estimate the extent of the operation of the perpendicular effect. [72]

 π Acceptor groups, phenylsulfonyl groups, and phenyl rings at C3 and C7 change the Cope barriers of barbaralane very little but raise that of semibullvalene. The latter result was found for cyano groups by MNDO $^{[12]}$ and AM1 calculations. $^{[13]}$ These substituents interact similarly with the ground and transition state of barbaralane but destabilize the transition state for the Cope rearrangement of semibullvalene, given that their influence on the ground states is predicted to be the same for both systems (see above).

Table 7. Effect $\Delta\Delta G^{\not=}$ [kJ mol $^{-1}$] of substituents at C1 and C5 (R₁, R₅) of semibullvalenes on the degenerate Cope rearrangement; $\Delta\Delta G^{\not=}$ is defined as $\Delta G^{\not=}(R_1,\,R_5)$ – $\Delta G^{\not=}(R_1=R_5=H)$ for 200 K

Cpd.	R _{2,6} or R _{3,7}	R ₁	R ₅	∆∆G [≠] 200	Parent $(R_{1,5} = H)$
3a 3h 4h	H PhSO ₂ PhSO ₂	Me	Me	-4.8 -4.2 -5.0	5a 5h 6h
7a 7h	H PhSO ₂	–(CF	H ₂) ₃ -	-9.6 -7.3	5a 6h
8a 8h	H PhSO ₂	-(CI	H ₂) ₄ -	-7.2 -4.9	5a 6h

As has been observed by Günther et al., [20] methyl substitution at the bridgeheads C1 and C5 of semibullvalene decreases the barrier toward the Cope rearrangement. This result is confirmed by the data for the phenylsulfonylsemibullvalenes 3h-6h listed in Table 7. 1,5-Annulation of semibullvalene is even more effective. The tetramethylene bridge as in 8 and, in particular, the trimethylene bridge as in 7 lower the barrier more than any of the substituents on the allylic moiety that have been investigated so far! Obviously, this is caused by the relief of strain on the way to the Cope transition state. Extrapolation of the experimental result, viz. further shortening of the 1,5 bridge, would eventually lead to semibullvalenes that cope with the imposed strain by avoiding closure of the C2-C8 bond; in other words, by existing as delocalized, bishomoaromatic molecules. This hypothetical approach to homoaromatic semibullvalenes is suggested by chemical intuition and has been put on a more quantitative basis by semiempirical [12] and recent ab initio calculations. [14][15]

In addition to increase of strain in the σ skeleton of the localized semibullvalene structures, stabilizing electronic effects of π acceptors and aryl groups on the delocalized structures favor the existence of homoaromatic semibullvalenes. The magnitude of these effects may be deduced from the results presented in Tables 4–6. Clearly, four groups from these categories, attached to the termini of the two allylic moieties, do lower the Cope barrier beyond the limit of dynamic carbon-13 spectroscopy. Repulsion of the substituents on the cyclopropane ring (C2 and C8) of the localized form that are eclipsing will contribute to diminishing the barrier. We note that the effects of phenyl and cyano groups may be not only additive but cooperative, i. e. in terms of a donor-acceptor stabilisation of the delocalized system.

The syntheses of several promising candidates for neutral homoaromaticity in semibullvalenes and barbaralanes have reported. Grohmann's semibullvalene tetraesters [64] [76] [77] and William's semibullvalene bisanhydride [78] are not, however, delocalized according to all experimental criteria. The same is true for 2,6-dicyano-4,8-diphenylbarbaralane [79] and 2,4,6,8-tetraphenylbarbaralane [80] shown for the solid state by X-ray crystallography and by Saunder's isotopic perturbation method for solutions. [81] No experimental decision has been reached so far in the case of 2,6-dicyano-1,5-dimethyl-4,8-diphenylsemibullvalene whose pronounced absorption of visible light suggests the as yet smallest energy difference between a localized and a delocalized semibullvalene structure [82] Clearly, this substitution pattern of a semibullvalene combined with a trimethylene bridge connecting C1 and C5 provides the safest, albeit perhaps not the most convenient recipe for a homoaromatic semibullvalene.

We are indebted to Professor *J. Sauer*, Regensburg, for samples of **4e**, **l**, and **m**. Professor *G. Schröder*, Karlsruhe, was so kind to bring data of **1n**—**r**, which were obtained by his group, to our attention. We thank Dr. *W. Ott, Merck*, Darmstadt, for providing the rate constants of the Cope rearrangement of **2j** and Dr. *K. Peters*, *Max-Planck-Institut für Festkörperforschung*, Stuttgart, for the calculation of torsional angles from X-ray data. M. H. is particulary grateful to Ms. *E. Ruckdeschel* and Dr. *D. Scheutzow* for technical advice. 4-*tert*-Butylthiophenol was a gift by the *Hoechst AG*, Frankfurt am Main. Chlorodifluoromethane was donated by *Solvay*, Hannover.

Experimental Section

Variable-Temperature NMR Experiments

Instrumentation: Bruker DMX 600 (Würzburg), operating at 150.90 MHz for carbon-13, equipped with a temperature control assembly B-VT-2000 (display and control unit BTO-2000-E) and a probe head heater BMT 05. — Bruker AM 500 (125.76 MHz), AM 360 (90.59 MHz, PSU) and AC 200 (50.32 MHz, Würzburg) equipped with a variable-temperature unit B-VT-1000. — Chemical shifts from carbon-13 spectra recorded at various temperatures are reported in ref. [83]. 91-MHz and 126-MHz carbon-13 spectra are reported in ref. [84] for 1e, h, 2h, j, 3e, h, 4h, and 7h.

Table 8. Experimental line widths $W_{\rm obs}$ [Hz], line widths of reference signals $W_{\rm ref}$ and calculated exchange broadenings $W_{\rm ex}=W_{\rm obs}-W_{\rm ref}$ and rate constants k [s $^{-1}$] for the degenerate Cope rearrangements of barbaralanes (1, 2); the solvents employed and shift differences Δv [Hz] in the slow-exchange limit, which were obtained from spectra recorded at the lowest temperatures listed, are also given; abbreviations used for solvents: $A = [D_6]$ acetone, B = dichlorodifluoromethane, <math>C = chlorodifluoromethane, $D = [D_2]$ dichloromethane, $E = [D_6]$ dimethyl ether, $E = [D_8]$ toluene

1c	Wobs	W _{ex}	W _{ref}					10-	-5 k
T	C4	1,8	[a]					C 4	1,8
200		z, Τ, Δ		5466				41	4
373 361	13.4 15.7	11.3 13.7	2.1 2.0					34	.4
359	15.7	13.7						33	
350	33.9	30.9						15	
343	57.1		1.9						5.51
338	61.5	59.7							.87
332	103.4	99.5						4	.71
326	110.3	109.5	0.8				_	4	.29
	$W_{\rm obs}$	$W_{ m ex}$	W_{ref}						$^{-2} k$
	<u>C</u>		C9				_	<u> </u>	4
		Hz, C/		: 1					
236.5	264		1.04						1.26
204.1	151 M	6.26	1.32						0.194
226.7	52.3	50.0	2.3					1	.57
221.6	28.5	25.9							.814
213.4		10.7	3.7						,338
1e	W	obs		W	ex		W_{ref}	10-	-5 k
T	C2,6	C4,8		C2,6	C4,8	C	HCIF	C2,6	C4,8
	126 M	Hz, C/	D = 3	:1, Δ <i>ν</i> ₆	$_{,2} = 120$	067, Δ	v _{4,8} =	12970	
280	2.9	2.9		1.4	1.4		1.5	1634	1887
217	55.7			54.1			1.6	42.2	61.5
207	108	87.0		104	82.8		4.2	21.9	31.9
200	156 181	140		154 179	138		2.0 1.6	14.9 12.8	19.1
195	101	Wobs		179	Wex		1.0 -		-2 k
	C2	"obs C6	C8	C2	C6	C8			6 C8
119	38.3	43.1	63.0		36.1	56.0	7.0	0.97 1	
1j	Wobs	Wex	W _{ref}		$W_{\rm ex}$		$W_{\rm ref}$	10	
T		2,6	i-C	C4	,8		m-C	C2,6	
								13943[b]	
302.2[c]		0.7	3.6	4.5	0.9	-	3.6	5510	3549
250.5[c]	8.0	4.5	3.5	7.9	4.2		3.7	796	727
247.4		4.2		8.7	4.3		4.4	853	710
216.4		16.2			17.0		4.6	221	180
211.2	40.1			26.6 49.7			4.7 4.2	100 76.5	139 67.1
206.0 200.9	50.7 44.7	46.8		48.5			4.9	89.1	70.0
195.7	60.6	55.4					5.8	64.6	59.3
189.4[0]		97.4					4.9	36.8	32.6
185.4[c]		171			152		5.3	20.9	20.1
175.0 ^[c]		470	6.0		396		5.6	6.49	
1k	$W_{\rm obs}$	$W_{\rm ex}$	$W_{\rm ref}$	$W_{\rm obs}$	$W_{\rm ex}$		W_{ref}		-5 k
T	C	2,6	<i>t</i> Bu	C4	,8		m-C	C2,6	C4,8
	151 M	Hz, C /	E = 3	:1, Δν ₆	_{,2} = 151	105, Δ	$v_{4,8} =$	13943 (at	~ 100 K)
295	2.51		2.00		0.43			7027	7102
242	8.07		2.78					677.5	791.1
238 ^[d] 226 ^[d]	10.45	6.98 16.34	3.47				3.79 4.57	513.5 219.3	553.2 300.3
225		10.34					3.57	353.4	271.7
216		10.6		22.49			3.59	338.1	161.6
203[d]	46.8	42.9		44.0	39.0		4.97	83.5	78.3
185			2.43		126		3.60		24.2
2h		Wobs			$W_{\rm ex}$		$W_{\rm ref}$	10	⁻⁵ k
T		4,6,8	C1,5			C1,5	C9	C2,4,6,8	C1,5
		Hz, A	C = 2			858, Δ			
303		5.8			5.2		0.6	198	
295		7.5			5.9		0.6	112	
283	4:	5.0	26	44	1.3	20	0.7	68.1	15.0
249			3.6			27.5	0.8 1.2		15.0 1.53
218		Wobs	28.7		$W_{\rm ex}$	21.3	1.4	10	$\frac{1.33}{-2 k}$
	C2,8	7 obs C4,6	C1	C2,8	" ex C4,6	C1_			4,6 C1
158	52.6	<i>₹</i> ,0	51.7	48.5	~ 1,0	47.6	4.1		1.52 1.49
148	16.5	16.6	15.7	11.2	11.3	10.4	5.3	0.352	

Table 8 (Continued)

2j	W _{obs} C2,4,6,8			$W_{\rm ex}$				10⁻⁵ k
Ť			C2,4	1,6,8	C1,5	C9	C2,4,6	,8 C1,5
	126 M	Hz, A / C	$= 2:1, \Delta v_2$	1.2 = 12	2299			
308		35.5		.9		0.6	68.1	
298		47.7		47.1		0.6	50.4	
281	1:	50	149	149		0.8	15.9	
270	2	63	262	262		0.7	9.0	7
		Wobs		$W_{\rm ex}$				10 ^{−2} k
	C2,8	C4,6	C2,8	C4,6			C2,8	C4,6
170	26.0	25.7	24.3	24.0		1.7	0.76	0.75
152	4.6	4.9	0.8	1.1		3.8	0.03	0.04

 $^{[a]}$ Line width of C4,8 of 2,6-bis(trifluoromethyl)bicyclo[3.3.1]nona-3,7-diene, which was added to the sample. $^{-[b]}$ Shift differences of the 4-tert-butyl derivative 1k. $^{[c]}$ In $[D_2]$ dichloromethane/ $[D_6]$ dimethyl ether (1:3). $^{-[d]}$ These data were obtained in a separate experiment.

Source of Compounds: The barbaralanes $\mathbf{1a}^{[85]}$, $\mathbf{c}^{[51]}$, $\mathbf{d}^{[25b]}$, \mathbf{e} , $\mathbf{h}^{[51]}$, $\mathbf{j}^{[26]}$, $\mathbf{2e}$, \mathbf{h} , $\mathbf{j}^{[56]}$ and semibullvalenes $\mathbf{3a}$, $\mathbf{7a}$, $\mathbf{8a}^{[85]}$, $\mathbf{3d}^{[34]}$, $\mathbf{e}^{[63]}$, $\mathbf{3h}-\mathbf{8h}$, $\mathbf{5}^{[52]}$ were available from previous work. The 3,7-substituted 1,5-dimethylsemibullvalenes $\mathbf{4e}$, \mathbf{l} and \mathbf{m} were kindly provided by Professor J. Sauer, Regensburg $^{[57][86]}$. The syntheses of barbaralane $\mathbf{1k}$ and semibullvalene $\mathbf{4i}$, which bear a *tert*-butyl group in the *para* position of their phenyl rings for improved solubility, follow the published routes for $\mathbf{1j}^{[26]}$ and $\mathbf{4h}^{[52]}$, respectively, and are described at the end of this Section.

Sample Preparation: The selection of suitable solvents was crucial because very low temperatures were required for rate studies in the slow-exchange limit. Sufficient solubilities were achieved in CHClF₂ mixed with deuterated solvents ([D₆]acetone, CD₂Cl₂ or [D₆]dimethyl ether) in a ratio that would provide a deuterium lock signal down to the lowest temperatures. [D₈]Toluene was used for experiments at higher temperatures. The solvents employed are given in Tables 8-12. - Samples were prepared from 20-100 mg of the barbaralanes or semibullvalenes in high-precision 5-mm tubes (Varian 507 PP) which were attached to a vacuum line (10^{-2}) Torr) connected to the sources of CHClF₂ and [D₆]dimethyl ether, which were kept in steel cylinders. Solutions in CD_2Cl_2 and $[D_6]$ acetone were degassed by standard freeze-thaw techniques prior to the addition of CHClF₂. Solutions in neat solvents (1c, h) were degassed in the same way. Eventually, the tubes were evacuated at -196°C/10⁻² Torr and sealed with a torch. The samples were allowed to thaw very slowly, which prevented breakage due to rapid expansion.

Carbon-13 Spectra: Because the limit of slow exchange is reached only at very low temperatures, if at all, for a number of compounds, the cooling rate of the samples became a critical factor. Very rapid cooling resulted in the precipitation of the dissolved compounds. - The sample tubes were allowed to equilibrate thermally for 15 min. At each temperature, changes of the frequencies of proton and carbon-13 channels and the impedance of the receiver circuit were carefully compensated before recording WALTZ-16-decoupled carbon-13 spectra without spinning (Bruker DMX 600 and AM 500). - Each temperature was calibrated with the help of NMR shift thermometers; DMX 600: carbon-13 shift thermometer for the range of 100-300 K, based on the temperature dependence of shifts of the rapidly equilibrating valence tautomers 1-ethyl-5methyl-2,6-semibullvalenedicarbonitrile and 5-ethyl-1-methyl-2,6semibullvalenedicarbonitrile [48]. AM 500: Methanol proton shift thermometer^[46] (175-300 K). In a single experiment (1c, Table 8), broadband decoupled 50.3-MHz carbon-13 spectra were recorded at temperatures above 310 K with a Bruker AC200 and calibrated

with the ethylene glycol proton shift thermometer. $^{[87a]}-$ Zero filling to 4 times the number of measured data points was performed resulting in a digital resolution ≤ 0.034 Hz/point. When signals were broad ($W_{\rm obs}>50$ Hz) or spectra had a poor signal-to-noise ratio, the FIDs, that were recorded with the Bruker DMX 600, were multiplied with exponential functions having small line-broadening

Table 9. Experimental line widths $W_{\rm obs}$ [Hz], line widths of reference signals $W_{\rm ref}$ and calculated exchange broadenings $W_{\rm ex}=W_{\rm obs}-W_{\rm ref}$ and rate constants k [s⁻¹] for the degenerate Cope rearrangements of semibullvalenes (3, 5h, 7a, 8a); the solvents employed and shift differences Δv [Hz] in the slow-exchange limit, which were obtained from spectra recorded at the lowest temperatures listed, are also given; solvents: see Table 8

3a	и	$W_{ m obs}$		V _{ex}	W_{re}	ef	10	⁻⁵ k
T		4,6,8	C2,	4,6,8	C3,		C2,	4,6,8
	151 MF			$v_{4,2} = 13$	248			
271.2 ^[a]		5.2		0.9	4.:		3206	
247.4		1.9		1.1	3.		2580	
196.0[a]		3.8		0.8	3.0		255 235	
195.7	100	5.1		1.7 5.6	3.4 3.4		233	
164.7 162.4[a]			100		3.			5.0
154.3[a]			247		3.			2
144.0[a]	663		651		4.			1.19
133.7	2131		212	7	4.			30
20011	и	obs	V	V _{ex}			10	-2 k
	C2,6	C4,8	C2,6	C4,8			C2,6	C4,8
113.0	1655		1648		6.	8	51.8	
110.9	854	871	847	864	7.		26.8	27.1
103.7	442	388	432	378	9.		13.6	
3d		obs	V	V _{ex}	W_{r}			⁻⁵ k
<u>T</u>	C2,6	C4,8	C2,6	C4,8	C3,		C2,6	C4,8
	151 MF	łz, C/E	= 7:1, ∆	$v_{6,2} = 11$	423, Δν _{4,}	$\frac{1}{8} = 126$	30[b]	45.0
144	7.2	8.7	4.0	5.5	3. 3.		510 292	456 295
134 129	10.2 13.2	11.7 15.3	7.0 8.9	8.5 11.0	3. 4.		230	228
129	22.7	24.4	12.3	14.0	10.		167	179
118	37.9	43.2	19.2	24.5	18.		107	102
108	106	109	76.8	79.6	29.		26.7	31.5
103	153	166	121	134	31.		16.9	18.7
3e		obs	W_{ex}		$W_{\rm r}$	ef	10	⁻⁵ k
T		2,6	C2,6		CHC	CHClF ₂		2,6
	126 MI	Hz, C / D	$= 4:1, \Delta v_{6,2} = 10$)131 ^[c]			
173		4.1	3.2		0.		504	
163		8.9	8.0			0.9		2
153		1.7	20.9		0.8			7.1
148		6.6		5.7	0.9			5.2
138		7.0		6.0	1.0		18.7 10 ⁻⁵ k	
5h		V _{obs} C4,8	C2,6	V _{ex} C4,8		W _{ref}		C4,8
<u>T</u>	C2,6					i-C m-C 570, $\Delta v_{4,8} = 145$		C4,0
300.1	5.90	8.43	2.92	5.51	2.98	2.92	850	601
268.1	19.2	29.1	13.9	22.0	5.32	7.10	179	151
262.9	29.0	27.7	23.1	22.1	5.88	5.55	107	150
257.7	54.8	49.9	49.8	44.3	4.98	5.64	49.8	74.7
247.4	84.5	64.1	79.8	57.0	4.70	7.05	31.1	58.1
237.1	114	112	109	106	5.30	6.51	22.8	31.2
	И	Vobs	,	V _{ex}				$0^{-2} k$
	C2	C4	C2	C4			C2	C4
133.6	14.8	17.8	7.8	10.8	7.0	7.0	0.245	
7a		Vobs		W _{ex}	W ₁	ef		$r^{-5}k$
<u>T</u>	C2,4,6,8			,4,6,8	C3	, /	C2,	4,6,8
				v = 1330				
164.7		6.5		3.4	3.		708	
144.0		1.9		8.8	3.		150	
138.8		3.5		0.2	3.			1.8 3.2
133.7 128.5		3.3 5.4		0.1 1.1	3. 4.			5.2 1.4
128.3	163		14		16.			7. 4 9.6
118.2	270		25		18.			0.6
113.0	470		45		20.			5.49

Table 9 (Continued)

8a	$W_{ m obs}$	Wex	$W_{\rm ref}$	10 ^{−5} k	
T	C2,4,6,8	C2,4,6,8	C3,7	C2,4,6,8	
	151 MHz, C/E	$= 3:1, \Delta v = 13301$	[[d]		
247	1.5	0.3	1.2	9310	
196	5.2	3.1	2.1	896	
165	30.0	23.5	6.5	119	
144	148	135	12.9	20.7	
139	241	229	12.4	12.2	
134	392	379	12.9	7.38	
129	670	656	13.8	4.26	
123	1219	1203	16.3	2.32	

 $^{[a]}$ These data were obtained in a separate experiment. - $^{[b]}$ $\Delta\nu_{6,2}$ and $\Delta\nu_{4,8}$ were estimated from the barbaralane 1d [$\Delta\delta(3d)=\Delta\delta(1d)-15.7$ ppm, see Table 2]. - $^{[c]}$ $\Delta\nu_{6,2}$ was estimated from the barbaralane 1e [$\Delta\delta(3e)=\Delta\delta(1e)-15.4$ ppm, see Table 2]. - $^{[d]}$ Shift difference of C-2 and C-4 in the low-temperature spectrum (ca. 100 K) of 1-ethyl-5-methylsemibullvalene $^{[83]}$, which is the major isomer of the pair of valence tautomers.

factors of maximal 3.0 Hz. The influence of various line-broadening factors on $W_{\rm ex}$ was tested for ${\bf 1a}$ at 302 and 247 K. Line-broadening factors of 0, 3, and 5 Hz gave $W_{\rm ex}=28.0\pm0.1$, 28.4 ± 0.1 , and 28.6 ± 0.2 Hz for the former, 461 ± 6 , 466 ± 12 , and 465 ± 13 Hz for the latter temperature, respectively. Particular attention was paid to the phase and the baseline corrections because small deviations from the optimum resulted in considerable errors in the line widths. — The Lorentzian lineshape least-squares fitting routine, which is part of the Bruker software package, was used for the determination of the line widths. Computed lineshapes were adjusted to strongly expanded experimental signals by inspection. When six values of the line widths obtained in this way agreed within 5%, their average was calculated and is reported as $W_{\rm obs}$ and $W_{\rm ref}$ in Tables 8–12.

Rate Constants and Eyring Parameters: Rate constants k were calculated from line widths with the help of eq. 1 and 2 as appropriate (Tables 8–12). The Eyring parameters listed in Tables 4 and 5 were obtained by least-squares fits of $\ln(k/T)$ vs. 1/T data (Figures 1–4). The errors given in Tables 4 and 5 are statistical errors that result from the regression analysis of the Eyring plots. In addition, the error treatment for kinetic parameters given by Benson [49] was used for the Eyring parameters. It is based on the errors in k and T at the highest and lowest temperature employed for the measurements. [50] The error in k was estimated as 5% owing to the error in line width and Δv . The error in T was estimated to be ± 1 K. The percental errors determined in this way are given in brackets in Tables 4 and 5.

Synthesis of Barbaralane 1k^[88]

O Ar OH Ar

12 13 14

Br

Ar =
$$\ell Bu$$

15

2.6-Bis(4-tert-butylphenyl) bicyclo[3.3.1]nonane-2.6-diol (13): To a stirred solution of 4-tert-butylbromobenzene (20.8 ml, 120 mmol) in diethyl ether (150 ml), kept under N_2 at $-60\,^{\circ}\text{C}$, a solution of butyllithium in hexane (1.286 M, 80 ml, 103 mmol) was added within 45 min. After 1 h at $-78\,^{\circ}\text{C}$, the yellow solution was allowed to warm, while a solution of 12 (5.0 g, 33 mmol) $^{[89]}$ in a mixture of diethyl ether (225 ml) and tetrahydrofuran (150 ml) was added within 1 h. The solution was heated under reflux for 15 h. After cooling at 0°C, sat. aq. NH₄Cl (25 ml) was added slowly. The organic layer was extracted with a mixture of sat. aq. NH₄Cl and

Table 10. Experimental line widths $W_{\rm obs}$ [Hz], line widths of reference signals $W_{\rm ref}$ and calculated exchange broadenings $W_{\rm ex}=W_{\rm obs}-W_{\rm ref}$ and rate constants k [s⁻¹] for the degenerate Cope rearrangements of semibullvalenes (4, 6h, 7h); the solvents employed and shift differences Δv [Hz] in the slow-exchange limit, which were obtained from spectra recorded at the lowest temperatures listed, are also given; solvents: see Table 8

	777		T.	77		727		10-	
4e	W CO	obs	Ca	ex			ef 100 -		
<u>T</u>		4,6,8		4,6,8	14471[0]	Chu	11-2	C2,4,	0,8
047.4			E = 7:1	, Δν _{4,2} =	14471[a]	1	7	473	
247.4		.7		2.0		1.		76.9	
221.6	44			5.0 5.0		1. 2.		50.	
216.4	68 83			4		1.		40.6	
211.2 206.0	131		129			1.		25.	
200.0				V _{ex}		1.	,	10-2	
	C1	obs C5	C1	ex C5				Cl	C5
113.0	46.2	46.8	20.3	20.9		25.	o	0.64	0.66
107.8	49.3	48.6	11.1	10.4		38.		0.35	0.33
4h		obs	L	V _{ex}		W _r		10-	
T		obs 4,6,8	C2	ex 4,6,8		p-(C2,4,	
					: 12200 ^[b]			<u> </u>	
270		.5	D - 3.1	, 4 _{4,2} - 2.6	122000	0.	9	899	
247		.8		3.4		0.		278	
237	13			2.5		0.		187	
232	19			3.7		0.		125	
219	34			3.4		0.		70.0)
211	89			3.6		0.		26.4	
205	116		115			1.		20.3	3
4i		obs	Į	V _{ex}		$W_{\rm r}$	ef	10-	
T	C2,	4,6,8		4,6,8		0-0		C2,4	6,8
	151 M	Hz. C /	E = 8:1	, Δν _{4,2} =	14637				
292		.99		0.79		2.	20	4260	
240	14			2.0			62	280	
231	29			5.1		3.	42	129	
226	33	.6	30	0.2		3.	36	111	
217	61	.1	51	1.7		3.	42	58.3	3
209	102	:	91	7.8		3.	66	34.	4
	W	obs	Į	V _{ex}				10-2	2 k
	C2,8	C4,6	C2,8	C4,6				C2,8	C4,6
144	428	611	414	589	- "	13.	4	13.0	18.5
139	240	232	225	217		15.	2	7.06	6.82
134	121	128	101	108		19.		3.17	3.39
129	42.7	47.8	17.9	23.0		24.		0.562	0.722
123	37.0	37.6	4.1	4.7		32.		0.129	0.148
41	И	obs	Į	V _{ex}		$W_{\rm r}$	ef	10-	
T	C2,4	1,5Me		1,5Me		o-C	p-C	C2,4	1,5Me
		Hz C / I	D = 7:1	$\Delta v_{4,2} =$	12348, 🛭	v _{Me} =	273		
301.2	2.8		0.9			1.9		2677	
257.7	14.7		12.7			2.0		190	
252.6	17.9		16.7			1.2		144	
247.4	24.0		22.7			1.3		106	
242.2	30.1		28.9			1.2		83.3	
237.1	40.0		37.8			2.2		63.7	
226.7	78.7		76.5			2.2	٠.	31.5	0.255
185.4		5.4		3.3			2.1		0.355
169.9		18.3		16.7			1.6		0.070
154.3		153		151			2.1	- 10.3	0.008
		obs		ex				10-2	
1440		<u>vie</u>		Me			3.7	1M	
144.0	71			7.9 5.0			6.1	0.5	
133.7	21						7.3	0.4	
128.5	20	.0	12	2.7			1.3	0.4	10

Table 10 (Continued)

6h		W _{ob}	ne		$W_{\rm ex}$	v	$W_{\rm ref}$	10-	-2 k
T	C	2,4	ຶC1,5	С	2,4	C1,5	p-C	C2,4	C1,5
	151 M	Hz, C / 1	E = 6:1			Δν _{5.1} =	665		
302.2	6	5.5		.,_ 5	5.2	-,-	1.3	699	
262.9	43	.1		41	.8		1.3	86.0	
247.4	77	'.1		75	5.5		1.6	47.7	
195.7			24.3			21.2	3.1		0.63
	и	obs			V _{ex}	-		10-	$^{-2} k$
	C2,8	C4,6		C2,8	C4,6	_		C2,8	C4,6
154.3	68.1	65.4		61.2	58.5	_	6.9	1.92	1.84
144.0	14.3	18.2		5.0	8.9		9.3	0.16	0.28
7 h	и	obs	$W_{\rm ex}$			$W_{\rm ref}$		10−5 k	
T		4,6,8	C2,4,6,8			p-C		C2,4,6,8	
	126 M	Hz, C / 1	D = 3:1	$\Delta v = 3$	2312				
240	4	1.3	3	.6		0	.7	660	
225	10	0.0	9	.2		0	.8	260	
215	18	3.1	17	.1		1	.0	140	
208	28	3.3	25	.9		2	.4	92	
200	45	5.7	44	.3		1	.4	54	
190	95	5.8	94	.0		1	.8	25	
185	137	,	135			2	.0	18	
178	251	l	249			2	.2	9	.6
	И	obs	И	ex				10	$^{-2} k$
	C2,8		C2,8	C4,6	_			C2,8	C4,6
115	37.0	44.0	32.0	39.0		5	.0	1.01	1.23

 $^{[a]}$ $\Delta\nu_{4,2}$ is the difference between the average shifts of the low-field (C4, C6) and the high-field pair (C2, C8) of signals (see text). - $^{[b]}$ Calculated from the shift difference in the 151-MHz carbon-13 spectrum of the 4-tert-butyl derivative **4i** for the slow-exchange limit

water (1:1, 2 × 125 ml) and water (125 ml). The aq. layers were extracted with diethyl ether (2 × 50 ml). Drying of the combined organic layers with MgSO₄ and distillation of the solvent i. vac. yielded a colorless, waxy solid, which was recrystallized twice from CH₂Cl₂ at 0 °C to afford colorless crystals (9.71 g, 70%, m. p. 252–254 °C). – IR (KBr) [cm⁻¹]: ν = 3550 (OH). – MS: m/z (%): 402 (3) [M⁺ – H₂O], 384 (40) [M⁺ – 2H₂O], 287 (3) [M⁺ – tBuC₆H₄], 241 (14), 240 (11), 214 (31), 199 (14), 169 (18), 161 (100) [tBuC₆H₄CO⁺], 133 (13) [tBuC₆H₄+], 57 (67).

2,6-Bis(4-tert-butylphenyl) bicyclo[3.3.1]nona-2,6-diene (14): Diol 13 (8.00 g, 19 mmol) was added to a mixture of acetic acid (16 ml) and conc. H_2SO_4 (4 ml). The mixture was shaken for 5 min to afford a suspension which was diluted with water (120 ml) and extracted with petroleum ether (b. p. $30-50^{\circ}C$, 2×175 ml). The organic layer was extracted with sat. aq. NaHCO₃ (2×80 ml) and water (80 ml), and dried with MgSO₄. Distillation of the solvent i. vac. and drying of the residue (10^{-2} Torr) yielded colorless crystals (7.19 g, 99%, m. p. $125-127^{\circ}C$). Recrystallization from methanol gave colorless crystals m. p. $127-128^{\circ}C$. — IR (KBr) [cm $^{-1}$]: v=1630 (C=C). — MS: m/z (%): 384 (25) [M $^{+}$], 343 (16) [M $^{+}$ — C_3H_5], 271 (5), 183 (6), 177 (17), 163 (10), 149 (9), 91 (6), 57 (100).

4,8-Dibromo-2,6-bis (4-tert-butylphenyl) bicyclo [3.3.1] nona-2,6-diene (15): A solution of 14 (4.0 g, 10.4 mmol) in cyclohexane (400 ml) was heated under reflux and N-bromosuccinimide (4.44 g, 25 mmol) and azodiisobutyronitrile (0.1 g) were added. The conversion was monitored by reversed-phase HPLC with acetonitrile. After 2 h, the cooled solution was extracted with aq. NaOH (0.5 m, 2×300 ml), sat. aq. NaHCO $_3$ (300 ml), and water (300 ml), and dried with MgSO $_4$. Distillation of the solvent i. vac. yielded a yellow crude product (5.18 g, m. p. $172-175\,^{\circ}$ C) consisting of 15 (92%), 14 (1%) and a monobromo compound (4%, RP-HPLC). Recrystallization from ethyl acetate afforded yellow crystals (4.58 g, 89%, m. p. $177-178\,^{\circ}$ C). – MS: m/z (%): 542 (< 1) [M⁺], 463

Table 11. Experimental line widths $W_{\rm obs}$ [Hz], line widths of reference signals $W_{\rm ref}$ and calculated exchange broadenings $W_{\rm ex}=W_{\rm obs}-W_{\rm ref}$ and rate constants k [s⁻¹] for the degenerate Cope rearrangements of barbaralanes (1, 2e); the solvents employed and shift differences Δv [Hz] in the slow-exchange limit, which were obtained from spectra recorded at the lowest temperatures listed, are also given; solvents: see Table 8

1a	ī	V _{obs}		W _{ex}	W	obs		W _{ex}		ref			-5 k	
<u>T</u>		C2,	,4,6,8	1.5000		C	1,5		<u>C</u>	3,7	C2,	1,6,8	<u>C1</u>	,5
200.0					$4v_{5,1} = 179$	5.7				1	14			
302.2 295[a, b]		28.7 39.6		27.8 38.7						.1 .9	10			
268.1		47		46						.1		5, 8		
247.0		69		65						.4		3.41		
206.0				•••	223	3	2	19		.6			0.	229
	ī	V _{obs}	i	W _{ex}	W,	obs	1	W _{ex}				10-	-2 k	
	C2,8_	C4,6	C2,8	C4,6	<u>C1</u>	C5	C1	C5			C2,8	C4,6	C1_	C5
185.4	1047	1183	1045	1181						.3	32.8	37.1		
175[a, b]	257	251	254	248						.0	7.99	7.79		
169.9	129	131	126	128 9.8	14.2	140	10,5	10.3		.7 .7	3.96	4.02 0.308	0.220	0.324
154.3 133.7 ^[b]	13.4 5.8	13.5	9.7 0.45		14.2	14.0	10.3	10.3		. <i>i</i> .3	0.305 0.014	0.308	0.330	0.324
133,761 1d		V _{obs}		$W_{\rm ex}$		$\overline{W}_{\mathrm{obs}}$	W _{ex}			ref	0.014	10-	-5 k	
T	C2,6	C4,8	C2,6	C4,8			1,5			rei 29	C2,6	C4,8	Cı	.5
-		Iz, C / E =			$\Delta v_{4,8} = 147$,.		,
256.7	9.4	10.4	7.4	8.4		, - , 5,1			2	.0	404	404		
247.4	14.4	15.8	11.1	12.5					3	.3	272	306		
214.3	86.6	97.3	81.5	92.2						.1	36.8	36.7		
195.7		291		286						.1		11.9		
180.2		1042		1037		7.5	2.1			.4		3.28	3.3	
174.1						10.1	4.5			.6			1.3	
164.7 144.0						17.5 135	9.7 1 27			.8 .3				7336 056
144.0		V _{obs}	1	W _{ex}		W _{obs}	$W_{\rm ex}$.3		10-		330
	C2	obs C4	C2	C4		" obs	C1 rex				C2	C4	C 1	
130.1	134	132	126	124		128	120		7	.6	3.96	3.90	3.75	
123.3	51.8	60.4	40.3	48.9		60.6	49.1		11		1.27	1.54	1.54	
113.0		20.2		3.7		20.1	3.6		16			0.116	0.113	
1h	И	V _{obs}	J	W _{ex}	W_{c}	obs	Į	V _{ex}	И	ref		10-	·5 k	
T		C	2,6		C4,8	C1,5	C4,8	C1,5	i-C	C9	C	2,6	C4,8	C1,5
	91 MHz			$\Delta v_{4.8} = 97$	17.1, $\Delta \nu_{5,1}$									
303		40.0	- ;	39.7°	70.7		69.3		0.3	1.4	2	7.5	21.4	
297		76.5		76.1	86.7		85.3		0.4	1.4		4.3	17.4	
283	1'	70	1	70	218		216.5		0.4	1.5		5.41	6.85	
243						8.7		5.2		3.5				0.416
223														
212						38.5		34.6		3.9				0.063
213		V		w	w	38.5 77.5	w			3.9 3.1		10-	-? L	0.063 0.029
213		V _{obs}		W _{ex}	W _{obs}		W _{ex}	34.6	-				-2 k	
	C2	C6	C2	C6	W _{obs} C4		W _{ex} C4	34.6	. 7.4			C6	-2 <i>k</i> C4	
213 193 183	C2 270 64.5	V _{obs} C6 225 72.5						34.6	7.4 6.0		C2 8.24 1.84			
193	270 64.5	225 72.5	C2 263 58.5	218 66.5	<u>C4</u>		C4	34.6	6.0	3.1 5.3	8.24 1.84	C6 6.84 2.09	C4	
193 183	C2 270 64.5	C6 225 72.5 V _{obs} C2,	C2 263 58.5 4,6,8	C6 218 66.5 W _{ex}	66.6	77.5	61.3	34.6	6.0 И	3.1	8.24 1.84	6.84 2.09	C4 1.93	
193 183 2e T	C2 270 64.5 V	C6 225 72.5 V _{obs} C2, z, C / D / E	C2 263 58.5 4,6,8 3 = 1:2:7,	$\frac{C6}{218}$ $\frac{66.5}{W_{\text{ex}}}$ $\Delta v \Delta v_{4,2} =$	<u>C4</u>	77.5	61.3	34.6	6.0 И	5.3 7ref C9	8.24 1.84 C2,4	C6 6.84 2.09 10- 1,6,8	C4 1.93	
193 183 2e <i>T</i>	270 64.5	C6 225 72.5 V _{obs} C2, z, C / D / E 26.4	C2 263 58.5 4,6,8 E = 1:2:7,	$\frac{C6}{218} \\ 66.5 \\ W_{\text{ex}} \\ \Delta v \Delta v_{4,2} = \\ 25.4$	66.6	77.5	61.3	34.6	6.0 И	3.1 5.3 7ref C9	8.24 1.84 C2,4	C6 6.84 2.09 10- 1,6,8	C4 1.93	
193 183 2e <i>T</i> 299.1 278.4	C2 270 64.5	C6 225 72.5 V _{obs} C2, z, C / D / E 26.4 63.0	C2 263 58.5 .4,6,8 3 = 1:2:7,	$\frac{C6}{218} = \frac{66.5}{66.5}$ $W_{\text{ex}} = \frac{\Delta v \Delta v_{4,2}}{62.0} = \frac{4}{3}$	66.6	77.5	61.3	34.6	6.0 И	5.3 /ref 	8.24 1.84 C2,4	C6 6.84 2.09 10- 1,6,8	C4 1.93	
193 183 2e T 299.1 278.4 267.8 ^[b]	C2 270 64.5 V	C6 225 72.5 V _{obs} C2, z, C / D / E 26.4 63.0 07	C2 263 58.5 44.6,8 3 = 1:2:7,	$ \frac{C6}{218} \\ 66.5 $ $ W_{ex} $ $ \Delta v \Delta v_{4,2} = 25.4 \\ 62.0 \\ 05 $	66.6	77.5	61.3	34.6	6.0 N	5.3 /ref 29 .0 .0	8.24 1.84 C2,4 17. 7	C6 6.84 2.09 10- 1,6,8	C4 1.93	
193 183 2e <i>T</i> 299.1 278.4 267.8 ^[b] 257.7	C2 270 64.5 //	C6 225 72.5 V _{obs} C2, C2, C2, C / D / E 26.4 63.0 07 78	C2 263 58.5 .4,6,8 3 = 1:2:7,	$ \frac{C6}{218} $ $ 66.5 $ $ W_{ex} $ $ \Delta v \Delta v_{4,2} = 25.4 $ $ 62.0 $ $ 05 $ $ 77 $	66.6	77.5	61.3	34.6	6.0 N C	5.3 /ref .0 .0 .0	8.24 1.84 C2,4 17. 7 4. 2.	C6 6.84 2.09 10- 1,6,8	C4 1.93	
193 183 2e <i>T</i> 299.1 278.4 267.8 ^[b] 257.7 252.1 ^[b]	C2 270 64.5 V 151 MH.	C6 225 72.5 V _{obs} C2, z, C / D / E 26.4 63.0 07 78 47	C2 263 58.5 44.6,8 3 = 1:2:7, 10 11 24	$ \frac{C6}{218} $ 66.5 $ W_{ex} $ $ \Delta v \Delta v_{4,2} = 25.4 $ 62.0 05 77 44	66.6	77.5	61.3	34.6	6.0 N 1 1 2 1 2	5.3 5.3 /ref 29 .0 .0 .0 .3 .9	8.24 1.84 C2, 17. 7 4. 2.	C6 6.84 2.09 10- 1,6,8 5 1.5 2.2 5.1 3.2	C4 1.93	
193 183 2e <i>T</i> 299.1 278.4 267.8 ^[b] 257.7	C2 270 64.5 V 151 MH. 10 11 24 35	C6 225 72.5 V _{obs} C2, C2, C2, C / D / E 26.4 63.0 07 78	C2 263 58.5 .4,6,8 3 = 1:2:7, .6 .6 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7	$ \frac{C6}{218} $ $ 66.5 $ $ W_{ex} $ $ \Delta v \Delta v_{4,2} = 25.4 $ $ 62.0 $ $ 05 $ $ 77 $	C4 66.6 16804, Δν.	77.5 $105.1 = 14$	61.3	34.6	6.0 M (C) 1 1 2 1 2 1	5.3 7ref 29 .0 .0 .0 .3 .9 .1	8.24 1.84 C2,: 17. 7 4: 2: 11.	C6 6.84 2.09 10- 1,6,8	C4 1.93	
193 183 2e T 299.1 278.4 267.8 ^[b] 257.7 252.1 ^[b] 247.4	C2 270 64.5 I IS1 MH. 3 (0 11 12 24 33 69	C6 225 72.5 Y _{obs} C2, z, C / D / E 26.4 53.0 07 78 44 56 695 Y _{obs}	C2 263 58.5 4.6,8 3 = 1:2:7,	$ \frac{C6}{218} \\ 66.5 \\ W_{ex} $ $ \Delta v_{4,2} = 25.4 \\ 62.0 \\ 05 \\ 77 \\ 44 \\ 55 \\ 93 \\ W_{ex} $	C4 66.6 16804, Δν.	77.5 $14v_{5,1} = 14$	61.3 64.2	34.6 74.4	6.0 M (C) 1 1 2 1 2 1	5.3 5.3 /ref 29 .0 .0 .0 .3 .9	8.24 1.84 C2,: 17. 7 4: 2: 11.	C6 6.84 2.09 10° 4,6,8 5 5.1.5 2.2.2 5.1 3.2 2.5 6.4	C4 1.93	0.029
193 183 2e T 299.1 278.4 267.8[b] 257.7 252.1[b] 247.4 237.1	C2 270 64.5 V 151 MH: 10 11 24 33.5 66 70 C2,8	C6 225 72.5 72.5 V _{obs} C2, C / D / E 26.4 63.0 07 78 447 656 655 V _{obs} C4,6	C2 263 58.5 44.6,8 3 = 1:2:7, 10 11 20 30 60 11 C2,8	$\frac{\text{C6}}{218}$ $\frac{\text{66.5}}{\text{66.5}}$ W_{ex} $\frac{\Delta v \Delta v_{4,2}}{\text{62.0}}$ $\frac{\text{62.0}}{\text{63.0}}$ $\frac{\text{63.0}}{\text{64.0}}$ $\frac{\text{63.0}}{\text{64.0}}$ $\frac{\text{63.0}}{\text{64.0}}$ $\frac{\text{63.0}}{\text{64.0}}$ $\frac{\text{64.0}}{\text{64.0}}$ $\frac{\text{66.0}}{\text{64.0}}$ $\frac{\text{66.0}}{\text{64.0}}$	66.6	77.5 $105.1 = 14$	61.3 64.2	34.6 74.4	6.0 1 1 2 1 2 1	3.1 5.3 7ref 29 .0 .0 .0 .0 .3 .9 .1	8.24 1.84 C2,: 17. 7 4: 2: 11.	C6 6.84 2.09 10- 1,6,8 5 1.5 2.2 5.1 3.2 2.5 5.4 10- C4,6	C4 1.93 -5 k	
193 183 2e T 299.1 278.4 267.8 ^[b] 257.7 252.1 ^[b] 247.4 237.1	C2 270 64.5 V 151 MH 11 24 35 66 V C2,8 506	C6 225 72.5 72.5 C2, C/D/E 63.0 07 78 47 56 56 595 C4,6 499	C2 263 58.5 4,6,8 3 = 1:2:7, 10 11 24 33 66 12 C2,8 502	$\frac{\text{C6}}{218}$ $\frac{218}{66.5}$ W_{ex} $\frac{\Delta v \Delta v_{4,2}}{62.0}$ $\frac{62.0}{65}$ $\frac{62.0}{65}$ $\frac{62.0}{62}$ $$	C4 66.6 16804, Δν ₂ C1	77.5 $4\nu_{5,1} = 14$ 50 50 50 50	C4 61.3 164.2	34.6 74.4	6.0 1 1 1 2 1 1	3.1 5.3 7ref 5.9 .0 .0 .0 .0 .3 .9 .1 .6	8.24 1.84 C2,* 17 7 4: 2: 1:	C6 6.84 2.09 10- 1,6,8 5 1.5 2.2 5.1 3.2 2.5 5.4 10- C4,6 15.6	C4 1.93 5-5 k C1	0.029 C5
193 183 2e T 299.1 278.4 267.8 ^[b] 257.7 252.1 ^[b] 247.4 237.1	C2 270 64.5 V 151 MH 11 24 35 65 V C2,8 506 134	C6 225 72.5 Vobs C2, C / D / E 26.4 53.0 07 78 8 47 56 59 C4,6 499 128	C2 263 58.5 4.6,8 3 = 1:2:7, 6 11 22 3: 6: C2,8 502 130	$ \frac{C6}{218} \\ 66.5 $ $ W_{ex} $ $ \frac{\Delta v \Delta v \Delta v_{4,2}}{62.0} = 25.4 $ $ 62.0 $ $ 05 $ $ 77 $ $ 44 $ $ 555 $ $ 93 $ $ W_{ex} $ $ \frac{C4,6}{495} $ $ 124 $	C4 66.6 16804, Δν ₂ C1 129	77.5 $4\nu_{5,1} = 14$ 50 50 50 50 50 50	C4 61.3 164.2 C1	34.6 74.4 V _{ex} C5	6.0 1 1 2 1 2 1 1	5.3 /ref 29 .0 .0 .0 .3 .9 .1 .6	8.24 1.84 C2,4 17.7 7.4 2.11 1.12 C2,8 15.8 4.08	C6 6.84 2.09 10- 4,6,8 5 1.5 2.2 5.1 3.2 2.5 5.4 10- C4,6 15.6 3.91	C4 1.93 5-5-k C1 3.92	0.029 C5 3.85
193 183 2e T 299.1 278.4 267.8[b] 257.7 252.1[b] 247.4 237.1 172.3[b] 164.7 159.5	C2 270 64.5 F 151 MH. 26 35 66 76 C2,8 506 134 74.6	C6 225 72.5 Vobs C2, C / D / E 26.4 53.0 07 78 8 47 56 95 C4,6 499 128 72.5	C2 263 58.5 4.6,8 3 = 1:2:7, 6 11 22 33 66 C2,8 502 130 68.9	$ \frac{C6}{218} \\ 66.5 \\ W_{ex} $ $ \frac{\Delta v \Delta v_{4,2}}{25.4} = 25.4 \\ 62.0 \\ 05 \\ 77 \\ 444 \\ 555 \\ 93 \\ W_{ex} \\ C4,6 \\ 495 \\ 124 \\ 66.8 $	C4 66.6 16804, Δν ₂ C1 129 76.2	77.5 126 75.6	C4 61.3 164.2 C1 125 70.5	34.6 74.4 V _{ex} C5 122 69.9	6.0 11 12 12 11 14 44 45	5.3 /ref .0 .0 .0 .3 .9 .1 .6	8.24 1.84 C2,4 17.7 7.4 22.15 1.5 C2,8 15.8 4.08 2.16	C6 6.84 2.09 10- 4,6,8 5 1.5 2.2 5.1 3.2 2.5 6.4 10- C4,6 3.91 2.10	C4 1.93 -5 k C1 3.92 2.21	0.029 C5 3.85 2.20
193 183 2e T 299.1 278.4 267.8 ^[b] 257.7 252.1 ^[b] 247.4 237.1	C2 270 64.5 V 151 MH 11 24 35 65 V C2,8 506 134	C6 225 72.5 Vobs C2, C / D / E 26.4 53.0 07 78 8 47 56 59 C4,6 499 128	C2 263 58.5 4.6,8 3 = 1:2:7, 6 11 22 3: 6: C2,8 502 130	$ \frac{C6}{218} \\ 66.5 $ $ W_{ex} $ $ \frac{\Delta v \Delta v \Delta v_{4,2}}{62.0} = 25.4 $ $ 62.0 $ $ 05 $ $ 77 $ $ 44 $ $ 555 $ $ 93 $ $ W_{ex} $ $ \frac{C4,6}{495} $ $ 124 $	C4 66.6 16804, Δν ₂ C1 129	77.5 $4\nu_{5,1} = 14$ 50 50 50 50 50 50	C4 61.3 164.2 C1	34.6 74.4 V _{ex} C5	6.0 11 12 12 11 14 44 45	5.3 /ref 29 0 0 0 0 0 0 3 9 1 6	8.24 1.84 C2,4 17.7 7.4 2.11 1.12 C2,8 15.8 4.08	C6 6.84 2.09 10- 4,6,8 5 1.5 2.2 5.1 3.2 2.5 5.4 10- C4,6 15.6 3.91	C4 1.93 5-5-k C1 3.92	0.029 C5 3.85

 $^{^{[}a]}$ The temperature was calibrated with a methanol shift thermometer $^{[87b]}$. $^{-}$ $^{[b]}$ These data were obtained in separate experiments.

(9) and 461 (8) $[M^+ - Br]$, 383 (17), 382 (50) $[M^+ - 2 Br]$, 367 (27), 325 (25), 269 (11), 191 (15), 176 (32), 162 (15), 148 (17), 57 (100).

2,6-Bis (4-tert-butylphenyl) tricyclo[3.3.1.0^{2.8}]nona-3,6-diene (**1k**): A stirred suspension of **15** (1.0 g, 1.84 mmol) and freshly prepared

zinc/copper couple (2.3 g) in diethyl ether (300 ml) under N_2 , was heated under reflux while the conversion was monitored by RP-HPLC with acetonitrile. After 2 h, the mixture was filtered through a 6-cm layer of Celite. The filtrate was extracted with water (2 \times 75 ml) and dried with K_2CO_3 . The solvent was distilled and the

Table 12. Experimental line widths $W_{\rm obs}$ [Hz], line widths of reference signals $W_{\rm ref}$ and calculated exchange broadenings $W_{\rm ex}=W_{\rm obs}-W_{\rm ref}$ and rate constants k [s⁻¹] for the degenerate Cope rearrangements of semibullvalenes (**3h**, **4m**, **8h**); the solvents employed and shift differences Δv [Hz] in the slow-exchange limit, which were obtained from spectra recorded at the lowest temperatures listed, are also given; solvents: see Table 8

3h	W_{obs}	W _{ex}	$W_{\rm ref}$	W _{ob}			W _{ex}	W _{ref}		10	-5 k	
T	(C2,6	i-C		<u></u>	4,8	CX.	p-C	C2	2,6	C4	1,8
	126 MHz, A / C =	$1:4$, $\Delta v_{6,2} = 10073$, Δ	$v_{4.8} = 1200$	35								
278	2.9	1.1	1.8	3.	.0		2.2	0.8	145	0	104	0
258	4.4	3.8	0.6	5	.4		4.8	0.6	41		478	
245	6.6	5.8	0.8	9.	.0		8.3	0.7	27	275		6
240	7.2	6.7	0.5	11.	.8		11.1	0.7	23	8	20	
235	10.4	9.9	0.5	14.8			14.0	0.8	16	1	16	4
225	14.2	13.4	0.8	26	.8		25.8	1.0	11	9		8.9
205				76	.8		72.4	4.4			3	1.7
195				152			151	1.4			1:	5.2
191				178			176	1.6			13	3.0
	151 MHz, C/E =	$3:1$, $\Delta v_{6,2} = 12102$, $\Delta v_{6,2} = 12102$	$v_{4,8} = 145$	32								
301.2	2.05	0.68	1.3	1.	.93		0.63	1.3	338		526	
252.1	8.80	5.4	3.4	13	.0		9.5	3.5	42	6	349	9
247.4	8.1	7.1	1.0	10.	.8		9.50	1.3	32	4	349	9
225.4	23.1	18.6	4.5	38.	4		33.4	5.0	12	4	9	9.3
214.9	51.5	47.8	3.7	67.	.4		62.5	3.9	4	8.1	53	3.1
195.7				423			421	1.9				7.88
	W_{obs}	$W_{\rm ex}$		$W_{\rm ob}$	s		$W_{\rm ex}$				-2k	
	C2	C2		C4_	C8	C4	C8	_	C	2	C4	C8
128.5	217	181	36,3	232		215		17.0		5.69	6.75	
116.6				49.4	46.4	31.1	28.1	18.3			0.98	0.88
4m	$W_{ m obs}$	$W_{\rm ex}$	$W_{\rm ref}$	$W_{\rm ob}$	s		$W_{\rm ex}$	$W_{\rm ref}$		10	-5 k	
T	C2	,4,6,8	m-C		C-	-Me		OMe	C2,4	,6,8	C-N	vle
	151 MHz, C/D/	$E = 1:1:1, \Delta v_{4,2} = 12:$	525, Δν _{Me}	= 267								
299.1	3.15	1.24	1.91						198	7		
268.1	7.66	5.68	1.98						43	4		
247.4	18.9	16.7	2.21						14	7		
226.7	59.8	57.2	2.60						4:	3.1		
216.4	129	126	3.49						19	9.6		
154.3				74.	5		65.1	9.43			(0.017
	W _{obs}	W_{ex}	•	W _{ob}			W _{ex}	•		10-	-2 k	
	C2,8 C4,6	C2,8 C4,6		5-Me	i 1-Me	5-Me			C2,8	C4,6	5-Me	1-Me
138.8	59.0 64.3	45.7 51.0	13.3	5 1110	62.5	0 1.10	42.6	19.9	1.44	1,60		1.33
133.7	54.2	22.7	31.5		02 .5		12.0	17.7	0.71	1,00		1.55
128.5	78.9	12.4	66.5	60.6	62.1	13.8	15.3	46.8	0.39		0.43	0.48
8h	W _{obs}	$W_{\rm ex}$	W _{ref}							10-	-5 k	0.10
T	oos C2	4,6,8	m-C							C2,4		
	151 MHz A / C =	1:5, $\Delta v_{4,2} = 14548$								<u> </u>	····	
280.0	5.9	2.4	3.5							138:	5	
260.2	9.4	5.9	3.5							56:		
253.1	13.6	10.0	3.6							33:		
237.9	21.5	17.9	3.6							186		
226.9	37.9	34.2	3.7								97.2	
216.2	70.3	66.4	3.7								50.1	
205.5	144.0	140.0	4.0								23.7	
203,3			W.							10-		
	C2,8 C4,6	C2,8 C4,6	W _{ref}						C2			6
1247	167 169	150 152	<u>p-C</u> 16.8								C4,	,0 7.8
134.7 129.5	70.4 77.1									7.1		
129.5	41.8 43.5	54.9 61.6 26.1 27.8	15.5 15.7							7.2 8.20		9.4 8.73
147.1	71.0 43.3	20,1 47,8	13,/							0.20		0.13

yellow residue (0.7 g, 99%) was dried at 10^{-2} Torr. Flash chromatography on silica gel with petroleum ether (b. p. $40-65\,^{\circ}\mathrm{C}$) and elution with CH₂Cl₂ afforded yellow crystals (0.37 g, 67%, m. p. $110-112\,^{\circ}\mathrm{C}$). – MS: m/z (%): 382 (2) [M⁺], 191 (44), 189 (44), 188 (29), 163 (28), 148 (15), 147 (96), 117 (10), 105 (12), 91 (15), 85 (10), 71 (26), 69 (10), 57 (100).

Synthesis of the Semibullvalenes 4i and 11i^[88]

 $3,7\text{-}Bis\,(4\text{-}tert\text{-}butylphenylthio})\text{-}1,5\text{-}dimethylbicyclo}[3.3.0]\text{-}octadienes}$ 17 and 18: Titanium(IV) chloride (34.5 ml, 315 mmol) was added under N_2 to a stirred, cooled (0 $-10\,^{\circ}\text{C}$) solution of $16^{[90]}$ (24.9 g, 160 mmol) in tetrahydrofuran (400 ml). The orange-red suspension was stirred vigorously and kept at $20-25\,^{\circ}\text{C}$ while a solution of 4-tert-butylthiophenol $^{[91]}$ (54.9 g, 330 mmol) and tri-

ethylamine (90 ml, 646 mmol) in tetrahydrofuran (110 ml) was added dropwise within 6 h. Stirring was continued for 15 h. The mixture was cooled to $0\,^{\circ}\text{C}$ and $\text{Na}_2\text{CO}_3\cdot 10~\text{H}_2\text{O}$ (40 g, 140 mmol) was added. After stirring for 4 d, the suspension was filtered through a 6-cm layer of Celite. The solid material was washed with cyclohexane (4 \times 100 ml). The combined organic layers were extracted with sat. aq. K_2CO_3 (4 \times 300 ml), sat. aq. KH_2PO_4 (2 \times 300 ml), and water (2 \times 300 ml). After drying with K_2CO_3 , the solvent was distilled i. vac. to afford a brown, viscous residue (73.9 g, quant.) consisting of 17 and 18 (1:1, HPLC, NMR). Flash chromatography on silica gel with petroleum ether/ethyl acetate (99:1) yielded a colorless, viscous oil.

3, 7-Bis (4-tert-butylphenylsulfonyl) - 1, 5-dimethyl-bicyclo[3.3.0]octadienes 19 and 20: A stirred solution of the crude

Table 13. Chemical shifts (δ values) and coupling constants (absolute values [Hz]) in proton spectra recorded from [D]trichloromethane solutions

				JOI GLIO				
Cpd.	1-H	3-H	4-H _n	4-H _x	9 -H	Ar-H	t-Bu	ОН
	5-H	7-H	8-H _n	8-H _x				
1k	2.92dt	6.12d	4.21dd		1.35t	7.3 - 7.5	1.27	
13 ^[a]	2.19m	2.25m 2.05m	1.71m	2.32m	1.19t	7.0 – 7.6	1.32	1.87
14	3.12m	5.98dd	2.48dm	2.11dd	1.98t	7.3 - 7.4	1.33	
15	3.61m	6.14d	4.71dm		2.54t	7.3 – 7.5	1.35	
	$^{2}J_{4n,4x}$	$^{3}J_{1,9}$	$^{3}J_{1,8x}$	$^{3}J_{1,8n}$	$^{3}J_{3,4n}$	$^{3}J_{3,4x}$		
	$^{2}J_{8n,8x}$	$^{3}J_{5,9}$	$^{3}J_{4x,5}$	$^{3}J_{4n,5}$	•	•		
1k	2.45	6.6		8.30				
14	18.1	2.93		5.80	2.26	4.93		
15		2.61	4.91					
	2-H	4-H	4-H	2-H	Me-H	Ar-H	t-Bu	
	8-H	6-H	8-H	6-H				
4i	4.63				1.11	7.5 - 7.7	1.33	
11i	3.25dd 3.54d	5.79 (6-H)			1.13 1.24	7.5 – 7.8	1.33	
17[a]			2.40	5.49	1.07	7.3 - 7.7	1.35	
18	5.41				1.12 1.09	7.3 – 7.7	1.32	
19 ^[a]			2.64	6.33	1.12	7.4 – 7.9	1.38	
20	6.42	2.39 2.46			1.11 0.98	7.4 – 7.9	1.36	
	$^2J_{AB}$	$^4J_{\rm AX}$	$^4J_{ m BX}$	$^{4}J_{6,8}$	$^{3}J_{2,8}$			
11i				1.02	5.75			
18	16.5	0.97	0.97					
20	16.3	1.62	1.62					

[[]a] The coupling constants were not determined.

Table 14. Chemical shifts (δ values) in carbon-13 NMR spetra; hemical shifts of carbon atoms that are equivalent by virtue of rapid degenerate Cope rearrangement (**4i**) are given only once; similar chemical shifts of carbon atoms (*in italics*) that bear the same number of protons may be exchanged

C-1	C-2	C-3	C-4	C-9		C-Ar		t	3u
C-5	C-6	C-7	C-8		i-C	o-C, m-C	p-C	С	CH ₃
29.6	87.8	121.9	79.5	19.3	140.7	125.6, 126.7	149.2	34.4	31.5
38.2	75.2	33.8	24.4	28.0	144.5	125.1, 125.7	149.7	34.4	31.3
29.9	138.4	121.9	34.4	29.2	139.7	125.2, 125.4	149.5	34.4	31.4
38.4	135.0	123.3	50.8	20.2	139.0	125.5, 125.8	151.8	34.6	31.2
				Me					
61.9	92.1	136.4		14.8	137.0	126.4, 127.6	157.3	35.2	31.0
57.4	52.7	135.7	139.3	14.8	135.7	126.3, 127.7	157.6	35.3	31.0
67.4						126.6, 127.9			
56.9	135.0	135.4	46.8	21.2	140.1	125.9, 126.1	150.1	34.5	31.2
51.5	135 6	135.3	49.2	21.6	140.1	125.9. 126.1	150.1	34.5	31.2
49.4	49.2	100.0				,			
58.0	148.6	135.8	41.3	20.1	141.5	126.3, 127.6	157.6	35.3	31.1
64.0	143.0	135.8	44.0	21.6	144.1	126.3, 127.6	157.7	35.3	31.0
53.6	44.0		143.0	18.2					
	C-5 29.6 38.2 29.9 38.4 61.9 57.4 67.4 56.9 51.5 49.4 58.0 64.0	C-5 C-6 229.6 87.8 38.2 75.2 229.9 138.4 38.4 135.0 61.9 92.1 57.4 52.7 67.4 136.3 56.9 135.0 51.5 135.6 49.4 49.2 58.0 148.6 64.0 143.0	C-5 C-6 C-7 29.6 87.8 121.9 38.2 75.2 33.8 29.9 138.4 121.9 38.4 135.0 123.3 61.9 92.1 136.4 57.4 52.7 135.7 67.4 136.3 135.2 56.9 135.0 135.4 51.5 135.3 49.4 49.2 58.0 148.6 135.8 64.0 143.0 135.8	C-5 C-6 C-7 C-8 29.6 87.8 121.9 79.5 38.2 75.2 33.8 24.4 29.9 138.4 121.9 34.4 38.4 135.0 123.3 50.8 61.9 92.1 136.4 57.4 52.7 135.7 139.3 67.4 136.3 135.2 51.1 56.9 135.0 135.4 46.8 51.5 135.6 135.3 49.2 135.6 58.0 148.6 135.8 41.3 64.0 143.0 135.8 44.0	C-5 C-6 C-7 C-8 29.6 87.8 121.9 79.5 19.3 38.2 75.2 33.8 24.4 28.0 29.9 138.4 121.9 34.4 29.2 38.4 135.0 123.3 50.8 20.2 Me 14.8 14.8 14.8 57.4 52.7 135.7 139.3 14.8 67.4 136.3 135.7 51.1 14.4 56.9 135.0 135.4 46.8 21.2 51.5 135.6 135.3 49.2 21.6 49.4 49.2 135.6 21.5 21.5 58.0 148.6 135.8 41.3 20.1 64.0 143.0 135.8 44.0 21.6	C-5 C-6 C-7 C-8 j-C 29.6 87.8 121.9 79.5 19.3 140.7 38.2 75.2 33.8 24.4 28.0 144.5 29.9 138.4 121.9 34.4 29.2 139.7 38.4 135.0 123.3 50.8 20.2 139.0 Me 14.8 137.0 57.4 52.7 135.7 139.3 14.8 135.7 67.4 136.3 135.2 51.1 14.4 14.4 56.9 135.0 135.4 46.8 21.2 140.1 51.5 135.6 135.3 49.2 21.6 140.1 49.4 49.2 135.6 21.5 58.0 148.6 135.8 41.3 20.1 141.5 64.0 143.0 135.8 44.0 21.6 144.1	C-5 C-6 C-7 C-8 i-C o-C, m-C 29.6 87.8 121.9 79.5 19.3 140.7 125.6, 126.7 38.2 75.2 33.8 24.4 28.0 144.5 125.1, 125.7 29.9 138.4 121.9 34.4 29.2 139.7 125.2, 125.4 38.4 135.0 123.3 50.8 20.2 139.0 125.5, 125.8 61.9 92.1 136.4 14.8 137.0 126.4, 127.6 57.4 52.7 135.7 139.3 14.8 135.7 126.3, 127.7 67.4 136.3 135.2 51.1 14.4 126.6, 127.9 56.9 135.0 135.4 46.8 21.2 140.1 125.9, 126.1 51.5 135.6 135.3 49.2 21.6 140.1 125.9, 126.1 49.4 49.2 135.6 21.5 140.1 125.9, 126.1 58.0 148.6 135.8 41.3 20.1	C-5 C-6 C-7 C-8 i-C o-C, m-C p-C 29.6 87.8 121.9 79.5 19.3 140.7 125.6, 126.7 149.2 38.2 75.2 33.8 24.4 28.0 144.5 125.1, 125.7 149.7 29.9 138.4 121.9 34.4 29.2 139.7 125.2, 125.4 149.5 38.4 135.0 123.3 50.8 20.2 139.0 125.5, 125.8 151.8 61.9 92.1 136.4 14.8 137.0 126.4, 127.6 157.3 57.4 52.7 135.7 139.3 14.8 135.7 126.3, 127.7 157.6 67.4 136.3 135.2 51.1 14.4 126.6, 127.9 126.6, 127.9 56.9 135.0 135.4 46.8 21.2 140.1 125.9, 126.1 150.1 51.5 135.6 135.3 49.2 21.6 140.1 125.9, 126.1 150.1 49.4 49.2	C-5 C-6 C-7 C-8 i-C o-C, m-C p-C C 29.6 87.8 121.9 79.5 19.3 140.7 125.6, 126.7 149.2 34.4 38.2 75.2 33.8 24.4 28.0 144.5 125.1, 125.7 149.7 34.4 29.9 138.4 121.9 34.4 29.2 139.7 125.2, 125.4 149.5 34.4 38.4 135.0 123.3 50.8 20.2 139.0 125.5, 125.8 151.8 34.6 61.9 92.1 136.4 14.8 137.0 126.4, 127.6 157.3 35.2 57.4 52.7 135.7 139.3 14.8 135.7 126.3, 127.7 157.6 35.3 67.4 136.3 135.2 51.1 14.4 126.6, 127.9 126.6, 127.9 56.9 135.0 135.4 46.8 21.2 140.1 125.9, 126.1 150.1 34.5 51.5 135.6 135.3 <

Table 15. Molecular formulae, masses, and elemental analyses

Cpd.		Molecular	Ele			
•		Mass		С	H	S
1k	C ₂₉ H ₃₄	382.6	Calcd.	91.04	8.96	
			Found	90.90	8.91	
4i	C ₃₀ H ₃₆ O ₄ S ₂	524.7	Calcd.	68.67	6.91	12.22
	30 30 4 2		Found	68.39	6.85	12.01
11i	C ₃₀ H ₃₅ BrO ₄ S ₂	603.6	Calcd.	59.69	5.84	10.62
	30 33 4 2		Found	59.55	5.73	10.44
13	$C_{29}H_{40}O_2$	420.6	Calcd.	82.81	9.58	
	2) 40 2		Found	82.63	9.82	
14	C29H36	384.6	Calcd.	90.57	9.43	
	- 29 30		Found	90.29	9.28	
15	$C_{29}H_{34}Br_{2}$	542.4	Calcd.	64.22	6.32	
	2) 34 2		Found	64.33	6.16	
19	C30H38O4S2	526.8	Calcd.	68.41	7.27	12.17
	30 30 4-2		Found	68.23	7.15	12.19
20			Found	68.23	7.15	12.19

mixture of 17 and 18 (46.3 g, 100 mmol) in acetic acid (750 ml) was heated at $50-55\,^{\circ}\mathrm{C}$ and sodium perborate tetrahydrate (140 g, 910 mmol) was added in small portions. The mixture was stirred for 4 h at this temperature. Water (500 ml) was added and the white suspension was cooled to $20-25\,^{\circ}\mathrm{C}$. The precipitate was isolated by filtration, washed with water and dried i. vac. to yield a colorless powder (19/20, 1:1, 50.6 g, 96%). Repeated recrystallizations from ethanol yielded colorless crystals (19/20, 3:1) which were treated with hot CCl₄ to afford pure 19, m. p. 287 $^{\circ}\mathrm{C}$.

Brominated 3,7-Bis(4-tert-butylphenylsulfonyl)-1,5-dimethylbicy-clo[3.3.0] octadienes **21** and **22**: N-Bromosuccinimide (4.28 g, 24 mmol) and azodiisobutyronitrile (0.1 g) were added to a solution of the crude mixture of **19** and **20** (1:1, 5.25 g, 10 mmol) in CH_2Cl_2 (100 ml) contained in a closed Schlenk tube. The mixture was placed just above a 250-W daylight lamp (Phillips ML) and irradiated for 12 h. The conversion was monitored by RP-HPLC with acetonitrile/water (90:10). The suspension was extracted with aq. NaOH (0.5 M, 100 ml), sat. aq. NaHCO₃ (100 ml), and sat. aq. NaCl (100 ml). The combined aq. layers were extracted with CH_2Cl_2 (4 \times 20 ml). Drying of the combined organic layers were dried with MgSO₄ and distillation of the solvent i. vac. yielded a

brown solid (mixture of 21 and 22, 4.24 g), which was used for the next step without purification.

3, 7-Bis (4-tert-butylphenylsulfonyl)-1, 5-dimethyltricyclo[3.3.0.0^{2,8}]octa-2,6-diene (4i) and 2-Bromo-3,7-bis(4-tertbutylphenylsulfonyl)-1,5-dimethyltricyclo[3.3.0.0^{2,8}]octa-2,6-diene (11i): The crude mixture of 21 and 22 (2.1 g) was dissolved in tetrahydrofuran (480 ml). Freshly prepared zinc/copper couple (2.1 g) was added and the suspension was heated under reflux for 2.5 h. The conversion was monitored by HPLC with petroleum ether/ ethyl acetate (80:20). The solid material was removed by filtration through a 6-cm layer of Celite. Distillation of the solvent i. vac. afforded a solid (mixture of 4i and 11i). Separation by flash chromatography on silica gel with petroleum ether/ethyl acetate (82:18) yielded colorless crystals of 4i (1st fraction, 0.26 g, m. p. 188-190°C). Recrystallization from ethyl acetate afforded colorless needles, m.p. 190-191 °C. - MS: m/z (%): 524 (10) [M⁺], 403 (14), 327 (28) [M^+ - $t Bu C_6 H_4 SO_2],\ 182$ (12), 181 (100) [$t Bu C_6 H_4 SO^+],$ 166 (27), 146 (15), 145 (14), 133 (15), 131 (24), 130 (48), 129 (45), 128 (17), 118 (13), 117 (18), 115 (28).

Bromosemibullvalene 11i was obtained as pale yellow crystals (2nd fraction, 0.33 g, m.p. 103-105°C). - MS: m/z (%): 604 (9) and 602 (7) [M⁺], 523 (5) [M⁺ - Br], 210 (17), 209 (11), 208 (19), 182 (12), 181 (100) [tBuC $_6$ H $_4$ SO $^+$], 166 (28), 145 (11), 133 (10), 129 (19), 128 (21), 117 (12).

[1] The results are taken from the Ph. D. thesis by E. Fernandes, The Pennsylvania State University, University Park, **1995**, and the dissertation by M. Heubes, University of Würzburg, **1998**. W. J. leNoble, *Chimia* **1978**, *32*, 31–32. A. T. Balaban, M. Banciu, V. Ciorba, *Annulenes, Benzo-, Heterry, Homo Darjustives, and their Valence Isomorm* **1st** ad CDC

- ero-, Homo-Derivatives, and their Valence Isomers, 1st ed., CRC Press, Boca Raton, Florida, USA, **1987**, vol. 1.
 M. D. Joesten, L. J. Schaad, Hydrogen Bonding, 1st ed., Marcel Dekker, New York, **1974**; G. Karlström, H. Wennerström, B. Jönsson, S. Forsen, J. Almlöf, B. Roos, J. Am. Chem. Soc. 1975, 97, 4188–4192; A. D. Isaacson, K. Morokuma, *J. Am. Chem. Soc.* **1975**, *97*, 4453–4457; W. F. Rowe, R. W. Duerst, E. B. Wilson, *J. Am. Chem. Soc.* **1975**, *98*, 4021–4023. M. Saunders, H. A. Jimenez-Vazquez, *Chem. Rev.* **1991**, *91*,

- F. Gerson, *Top. Curr. Chem.* **1983**, *115*, 57–105. W. von E. Doering, W. R. Roth, *Angew. Chem.* **1963**, *75*, 27–35; *Angew. Chem. Int. Ed. Engl.* **1963**, *2*, 115–122; *Tetrahedron* **1963**, *19*, 715–737.
- For a recent review on neutral homoaromaticity see R. V. Williams, H. A. Kurtz, *Adv. Phys. Org. Chem.* **1994**, *29*, 273–331. R. Hoffmann, W.-D. Stohrer, *J. Am. Chem. Soc.* **1971**, *93*,
- 6941 6948.
- M. J. S. Dewar, D. H. Lo, J. Am. Chem. Soc. 1971, 93, 7201 - 7207.
- [11] M. J. S. Dewar, Z. Nahlovska, B. D. Nahlovsky, *J. Chem. Soc., Chem. Commun.* 1971, 1377-1378. See however ref. [13].
 [12] L. S. Miller, K. Gromann, J. J. Dannenberg, *J. Am. Chem. Soc.* 1022, 1022, 1022, 1022.
- **1983**, *103*, 6862–6865.
- [13] M. J. S. Dewar, C. Jie, *Tetrahedron* **1988**, 44, 1351–1358.
- ^[14] Semiempirical methods: R. V. Williams, H. A. Kurtz, *J. Org. Chem.* **1988**, *53*, 3626–3628; *J. Chem. Soc., Perkin Trans.* 2 **1994**, 147-150.
- Ab initio calculations: H. Jiao, R. Nagelkerke, H. A. Kurtz, R. V. Williams, W. T. Borden, P. von R. Schleyer, *J. Am. Chem.* Soc. **1997**, 119, 5921–5929.
- W. von E. Doering, B. M. Ferrier, E. T. Fossel, J. H. Hartenskin, M. Jones, Jr., G. Klumpp, R. M. Rubin, M. Saunders, *Tetrahedron* **1967**, *23*, 3943–3963.
- [17] H. Günther, J. Runsink, H. Schmickler, P. Schmitt, J. Org. Chem. 1985, 50, 289-293.
 [18] [18a] U. Weier, Dissertation, University of Karlsruhe, 1987. —
- [18b] H. Baumann, A. Voellinger-Borel, Helv. Chim. Acta 1997, 80, 2112 - 2123.
- [19] A. K. Cheng, F. A. L. Anet, J. Mioduski, J. Meinwald, J. Am. Chem. Soc. **1974**, 96, 2887–2891.
- [20] D. Moskau, R. Aydin, W. Leber, H. Günther, H. Quast, H.-D.

- Martin, K. Hassenrück, L. S. Miller, K. Grohmann, Chem. Ber. **1989**, 122, 925-931
- ^[21] J. B. Lambert, *Tetrahedron Lett.* **1963**, 1901–1906; C. Engdahl, P. Ahlberg, J. Am. Chem. Soc. 1979, 101, 3940-3946.
- [22] L. G. Greifenstein, J. B. Lambert, M. J. Broadhurst, L. A. Pa-
- quette, *J. Org. Chem.* **1973**, *38*, 1210–1215.

 [23] H. Kessler, W. Ott, *J. Am. Chem. Soc.* **1976**, *98*, 5014–5016.

 [24] A. Busch, H. M. R. Hoffmann, *Tetrahedron Lett.* **1976**,
- 2379 2382
- [25] [25a] L. M. Jackman, G. Ibar, A. J. Freyer, Y. Görlach, H. Quast, Chem. Ber. 1984, 117, 1671–1678. [25b] H. Quast, Y. Görlach, J. Stawitz, E.-M. Peters, K. Peters, H. G. von Schnering, Chem. Ber. 1984, 117, 2745-2760.
- [26] H. Quast, E. Geissler, A. Mayer, L. M. Jackman, K. L. Colson, Tetrahedron 1986, 42, 1805–1813.
 [27] W. W. Win, K. G. Grohmann, L. Todaro, J. Org. Chem. 1994, 52, 2002. *59*, 2803 – 2808.
- [28] L. Ebenhöh, Dissertation, University of Karlsruhe, 1992.
- [29] B. I. Skuballa, Dissertation, University of Karlsruhe, 1992.
- [30] S. Weisgerber, Diplomarbeit, University of Karlsruhe, 1993.
- [31] M. Stern, Dissertation, University of Karlsruhe, 1994.
- ^[32] F. A. L. Anet, G. E. Schenck, Tetrahedron Lett. 1970, 4237-4240.
- 4237—4240.

 [33] [33a] H. Quast, Y. Görlach, J. Christ, E.-M. Peters, K. Peters, H. G. von Schnering, L. M. Jackman, G. Ibar, A. J. Freyer, *Tetrahedron Lett.* **1983**, *24*, 5595–5598; [33b] H. Quast, Y. Görlach, E.-M. Peters, K. Peters, H. G. von Schnering, L. M. Jackman, G. Ibar, A. J. Freyer, *Chem. Ber.* **1986**, *119*, 1001–1025 1801 - 1835.
- [34] H. Quast, J. Christ, E.-M. Peters, K. Peters, H. G. von Schnering, *Chem. Ber.* **1985**, *118*, 1154–1175.
- [35] H. Quast, C. A. Klaubert, L. M. Jackman, A. J. Freyer, *Chem. Ber.* **1988**, *118*, 1801–1806.
- [36] H. Kohnz, B. Düll, K. Müllen, Angew. Chem. **1989**, 101, 1375–1377; Angew. Chem. Int. Ed. Engl. **1989**, 28, 1343.
- [37] F. A. L. Anet, R. Anet, M. P. Trova, L. A. Paquette, *Tetrahedron Lett.* 1989, 47, 6469–6472. L. A. Paquette, M. A. Kesselmayer, G. E. Underiner, S. D. House, R. D. Rogers, K. Meer-
- holz, J. Heinze, *J. Am. Chem. Soc.* **1992**, *114*, 2644 2652. [38] M. L. Schwarzensteiner, Dissertation, University of Munich,
- [39] R. Iyengar, Ph. D. Thesis, City University of New York, Graduate School, Hunter College, 1987.
- [40] B. Düll, Dissertation, University of Mainz, 1990.
- [41] A. G. Anastassiou, Acc. Chem. Res. 1976, 9, 453–458; A. G. Anastassiou, E. Reichmanis, J. C. Wetzel, Tetrahedron Lett. **1975**, 1651-1654.
- [42] D. Moskau, W. Leber, H. Günther, R. Gompper, P. Spes, *Chem. Ber.* **1989**, *122*, 2361–2364.
- [43] C. Schnieders, K. Müllen, C. Braig, H. Schuster, J. Sauer, Tetrahedron Lett. 1984, 25, 749-752; C. Schnieders, Dissertation, University of Cologne, **1985**.

 [44] C. L. Perrin, T. J. Dwyer, *Chem. Rev.* **1990**, *90*, 935–967.
- [45] H.-J. Schneider, W. Freitag, J. Am. Chem. Soc. 1976, 478–481;
 A. Allerhand, R. E. Addleman, D. Osman, J. Am. Chem. Soc. **1985**, *107*, 5809-5810.
- [46] A. L. Van Geet, *Anal. Chem.* **1970**, *42*, 679–680. [47] F. L. Dickert and S. W. Hellmann, *Anal. Chem.* **1980**, *52*, 996 - 998.
- [48] H. Quast, M. Heubes, A. Dunger, H.-H. Limbach, J. Magn.
- Reson., in press.
 [49] S. W. Benson, The Foundations of Chemical Kinetics, 1st ed., McGraw-Hill, New York, 1960, p. 87 ff.; for the numbers of significant digits see: J. W. Moore, R. G. Pearson, Kinetics and Mechanism, 3rd ed., Wiley, New York, 1981, p. 33.
- Mechanism, 3rd ed., Wiley, New York, 1981, p. 33.

 [50] J. Heinzer, J. F. M. Oth, Helv. Chim. Acta 1981, 64, 258–277.

 [51] H. Quast, C. Becker, M. Witzel, E.-M. Peters, K. Peters, H. G. von Schnering, Liebigs Ann. Chem. 1996, 985–997.

 [52] H. Quast, J. Carlsen, R. Janiak, E.-M. Peters, K. Peters, H. G. von Schnering, Chem. Ber. 1992, 125, 955–968.

 [53] H. Kessler, W. Ott, H. J. Lindner, H. G. von Schnering, E.-M. Peters, K. Peters, Chem. Ber. 1986, 113, 90–103.

- [54] S. Sorriso, F. Stefani, E. Semprini, A. Flamini, J. Chem. Soc., Perkin Trans 2 1976, 374–378; W. J. E. Parr, T. Schaefer, J. Am. Chem. Soc. 1977, 99, 1033-1035.
- V. H. Grassian, E. R. Bernstein, H. V. Secor, J. I. Seeman, J. Phys. Chem. 1990, 94, 6691-6695.
- [56] H. Quast, M. Witzel, E.-M.Peters, K. Peters, H. G. von Schnering, Liebigs Ann. Chem. 1995, 725-738.

- [57] I. Sellner, H. Schuster, H. Sichert, J. Sauer, H. Nöth, Chem. Ber. **1983**, 116, 3751-3761.
- [58] H. Günther, J. B. Pawliczek, J. Ulmen, W. Grimme, Angew. Chem. 1972, 84, 539-540; Angew. Chem. Int. Ed. Engl. 1972, 11, 517-518; Chem. Ber. 1975, 108, 3141-3150; H. Günther, J. Ulmen, Chem. Ber. 1975, 108, 3132-3140; R. Bicker, H. Kessler, W. Ott, Chem. Ber. 1975, 108, 3151-3158.

 [59] N. Shida, C. Kabuto, T. Niwa, T. Ebata, Y. Yamamoto, J. Org.

Chem. **1994**, 59, 4068-4075, and references cited therein and in ref. [60].

- R. J. Loncharich, T. R. Schwartz, K. N. Houk, *J. Am. Chem. Soc.* **1987**, *109*, 14–23.
- M. F. Ruiz-Lopez, X. Assfeld, J. I. Garcia, J. A. Mayoral, L. Salvatella, *J. Am. Chem. Soc.* **1993**, *115*, 8780–8787. M. Wyn-Jones, R. A. Pethrick, *Top. Stereochem.* **1970**, *5*, 205–274.

- [63] H. Quast, A. Witzel, E.-M. Peters, K. Peters, H. G. von Schnering, Chem. Ber. 1992, 125, 2613-2623.
 [64] L. S. Miller, K. Grohmann, J. J. Dannenberg, L. Todaro, J. Am. Chem. Soc. 1981, 103, 6249-6251.
 [65] D. Webell, H. Schmid, D. Ballus, H.-I. Hansen, Hely Chim.
- [65] R. Wehrli, H. Schmid, D. Bellus, H.-J. Hansen, Helv. Chim. Acta **1977**, 60, 1325–1356.
- J. J. Gajewski, Acc. Chem. Res. 1980, 13, 142-148.
- [67] J. R. Murdoch, *J. Am. Chem. Soc.* **1983**, *105*, 2660–2667. [68] J. J. Gajewski, J. Emrani, *J. Am. Chem. Soc.* **1984**, *106*, 5733 - 5734.
- [69] T. H. Lowry, K. Schueller Richardson, Mechanism and Theory in Organic Chemistry, 2nd ed., Harper & Row, New York, 1981, pp. 881-891; N. Isaacs, Physical Organic Chemistry, 2nd ed., Longman, Harlow, Essex, England, 1996, pp. 751–753.
- [70] If there are two unsymmetrical transition states as suggested by McIver^[71], then these will be symmetrically displaced about the diagonal.
- [71] J. W. McIver, Jr., Acc. Chem. Res. 1974, 7, 72-77

- [72] E. R. Thornton, J. Am. Chem. Soc. 1967, 89, 2915-2927.
 [73] R. Fuchs, J. Chem. Educ. 1984, 61, 133-136.
 [74] J. B. Pedley, R. D. Naylor, S. D. Kirby, Thermochemical Data of Organic Compounds, 2nd ed., Chapman and Hall, London,
- W. R. Roth, V. Staemmler, M. Neumann, C. Schmuck, Liebigs Ann. 1995, 1061-1118; H. G. Korth, R. Lommes, R. Sustmann,

- Am. Chem. Soc. 1984, 106, 663-668; D. J. Pasto, J. Am. Chem. Soc. 1988, -110, 8164-8175.
- [76] R. Iyengar, R. Pina, K. Grohmann, L. Todaro, J. Am. Chem. Soc. 1988, 110, 2643-2644.
- [77] R. Askani, H. O. Kalinowski, B. Pelech, B. Weuste, Tetrahedron Lett. 1984, 25, 2321-2324.
- [78] R. V. Williams, V. R. Gadgil, K. Chauhan, D. van der Helm, M. B. Hossain, L. M. Jackman, E. Fernandes, *J. Am. Chem.* Soc. **1996**, 118, 4208-4209.
- [79] H. Quast, E. Geissler, T. Herkert, K. Knoll, E.-M. Peters, K.
- Peters, H. G. von Schnering, *Chem. Ber.* **1993**, *126*, 1465–1475. [80] H. Quast, K. Knoll, E.-M. Peters, K. Peters, H. G. von Schnering, *Chem. Ber.* **1993**, *126*, 1047–1060; H. Quast, C. Becker, E.-M. Peters, K. Peters, H. G. von Schnering, *Liebigs Ann.* **1997**, 685-698.
- [81] C. Becker, Dissertation, University of Würzburg, **1997**; M. Seefelder, Dissertation, University of Würzburg, **1998**.
 [82] H. Quast, T. Herkert, A. Witzel, E.-M. Peters, K. Peters, H. G. von Schnering, *Chem. Ber.* **1994**, *127*, 921–932.

 [83] M. Heubes, Dissertation, University of Würzburg, **1998**.
- [84] E. F. Fernandes, Ph. D. Thesis, The Pennsylvania State Univer-
- sity, University Park, Pennsylvania, **1995**.

 [85] H. Quast, T. Dietz, E.-M. Peters, K. Peters, H. G. von Schne-
- 1. G. Voll Schliebert, H. H. Feters, R. Feters, H. G. Voll Schliebering, Liebigs Ann. 1995, 1159-1168.
 186 D. Paske, R. Ringshandl, I. Sellner, H. Sichert, J. Sauer, Angew. Chem. 1980, 92, 464-465. Angew. Chem. Int. Ed. Engl. 1980; H. Schuster, H. Sichert, J. Sauer, Tetrahedron Lett. 1983, 24, 1409.
- 1485–1488.
 [87] [87a] A. L. Van Geet, *Anal. Chem.* **1968**, *40*, 2227–2229. [87b] A. L. Van Geet, Anal. Chem. 1970, 42, 679-680.
- [88] Instrumentation and chromatography: H. Quast, C. Becker, E. M. Peters, K. Peters, H. G. von Schnering, *Liebigs Ann.* **1997**, 685–698 and ref.^[83].
- [89] H. Stetter, H. Held, A. Schulte-Oestrich, Chem. Ber. 1962, 95, 1687-1691.
- S. H. Bertz, J. M. Cook, A. Gawish, U. Weiss, Org. Synth. Coll.
- Vol. **1990**, 7, 50–56. W. S. Faber, S. Wignand, J. Kok, B. Laude, L. Feringa, *Tetrahedron* **1994**, *50*, 4775–4794.

[98120]